1887

Abstract

Previous results indicated that molar growth yields are reduced when is cultured in media containing cellobiose concentrations greater than 1 g I. Continuous cultures were examined to determine the physiological basis of these poor growth yields. Acetate was the main product of metabolism, whereas the production of reduced compounds such as ethanol or lactate was low. Such patterns of product formation were accompanied by a 12-fold increase in intracellular NADH concentration when the cellobiose flow was increased. Catabolic enzymic activities were measured . Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), acetate kinase and phosphoroclastic activities were found at similar levels as in cells metabolizing higher substrate concentrations. In contrast, lactate dehydrogenase activity was low and correlated with the rate of lactate production. Furthermore, an inhibition of GAPDH activity by high NADH/NAD ratios was established. These results suggested that a decreased NADH reoxidation could be responsible for limiting growth. Lactate and ethanol production were not sufficient to balance out the NADH produced in the GAPDH step of glycolysis. One consequence of poor NADH reoxidation would be an increase in intracellular concentration of NADH, which in turn could inhibit GAPDH activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-2-375
1998-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/2/mic-144-2-375.html?itemId=/content/journal/micro/10.1099/00221287-144-2-375&mimeType=html&fmt=ahah

References

  1. Abbad-Andaloussi S., Manginot-Durr C., Amine J., Petitdemange E., Petitdemange H. 1995; Isolation and characterization of mutants of Clostridium butyricum DSM 5431 with increased resistance to 1,3-propanediol and altered production of acids.. Appl Environ Microbiol 61:4413–4417
    [Google Scholar]
  2. Abbad-Andaloussi S., Dürr C., Raval G., Petitdemange H. 1996; Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glycerol and on glucose.. Microbiology 142:1149–1158
    [Google Scholar]
  3. Abbe K., Takahashi S., Yamada T. 1982; Involvement of oxygen-sensitive pyruvate formate-lyase in mixed-acid fermentation by Streptococcus mutans under strictly anaerobic conditions.. J Bacteriol 152:175–182
    [Google Scholar]
  4. Andersch W., Bahl H., Gottschalk G. 1983; Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum . Eur J Appl Microbiol Biotechnol 18:327–332
    [Google Scholar]
  5. Bayer E. A., Morag E., Shoham Y., Tormo J., Lamed R. 1996 The cellulosome: a cell surface organelle for the adhesion to and degradation of cellulose.. In Bacterial Adhesion: Molecular and Ecological Diversity pp 155–182 Edited by Fletcher M. New York: Wiley-Liss;
    [Google Scholar]
  6. Beguin P., Aubert J. -P. 1994; The biological degradation of cellulose.. FEMS Microbiol Rev 13:25–58
    [Google Scholar]
  7. Blusson H., Petitdemange H., Gay R. 1981; A new, fast and sensitive assay for NADH–ferredoxin oxidoreductase detection in Clostridia . Anal Biochem 110:176–181
    [Google Scholar]
  8. Bradford M. M. 1976; A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principles of protein–dye binding.. Anal Biochem 72:248–254
    [Google Scholar]
  9. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria.. Am J Clin Nutr 25:1324–1328
    [Google Scholar]
  10. Cailliez C., Benoit L., Thirion J. -P., Petitdemange H. 1992; Characterization of 10 mesophilic cellulolytic Clostridia isolated from a municipal solid waste digestor.. Curr Microbiol 25:105–112
    [Google Scholar]
  11. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances.. Anal Chem 28:350–356
    [Google Scholar]
  12. Felix C. R., Ljungdahl L. G. 1993; The cellulosome: the exocellular organelle of Clostridium . Annu Rev Microbiol 47:791–819
    [Google Scholar]
  13. Ferdinand W. 1964; The isolation and specific activity of rabbit-muscle glyceraldehyde phosphate dehydrogenase.. Biochem J 92:578–585
    [Google Scholar]
  14. Gehin A., Gelhaye E., Raval G., Petitdemange H. 1995; Clostridium cellulolyticum viability and sporulation under cellobiose starvation conditions.. Appl Environ Microbiol 61:868–871
    [Google Scholar]
  15. Gelhaye E., Gehin A., Petitdemange H. 1993a; Colonization of crystalline cellulose by Clostridium cellulolyticum ATCC 35319.. Appl Environ Microbiol 59:3154–3156
    [Google Scholar]
  16. Gelhaye E., Petitdemange H., Gay R. 1993b; Adhesion and growth rate of Clostridium cellulolyticum ATCC 35319 on crystalline cellulose.. J Bacteriol 175:3452–3458
    [Google Scholar]
  17. Giallo J., Gaudin C., Belaich J. -P., Petitdemange E., Caillet-Mangin F. 1983; Metabolism of glucose and cellobiose by cellulolytic mesophilic Clostridium sp. strain H10.. Appl Environ Microbiol 45:843–849
    [Google Scholar]
  18. Girbal L., Soucaille P. 1994; Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool.. J Bacteriol 176:6433–6438
    [Google Scholar]
  19. Girbal L., Vasconcelos I., Saint-Amans S., Soucaille P. 1995a; How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH.. FEMS Microbiol Rev 16:151–162
    [Google Scholar]
  20. Girbal L., Croux C., Vasconcelos I., Soucaille P. 1995b; Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824.. FEMS Microbiol Rev 17:287–297
    [Google Scholar]
  21. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes.. Methods Microbiol 33:117–132
    [Google Scholar]
  22. Hüsemann M. H. W., Papoutsakis E. T. 1989; Comparison between in vivo and in vitro enzyme activities in continuous and batch culture fermentations of Clostridium acetobutylicum . Appl Microbiol Biotechnol 30:585–595
    [Google Scholar]
  23. Hyun H. H., Zeikus J. G., Longin R., Millet J., Ryter A. 1983; Ultrastructure and extreme heat resistance of spores from thermophilic Clostridium species.. J Bacteriol 156:1332–1337
    [Google Scholar]
  24. Junelles A. M., Janati-Idrissi R., Petitdemange H., Gay R. 1988; Iron effect on acetone–butanol fermentation.. Curr Microbiol 17:299–303
    [Google Scholar]
  25. Jungermann K., Thauer R. K., Leimenstoll G., Decker K. 1973; Function of reduced pyridine nucleotide-ferredoxin oxido-reductases in saccharolytic Clostridia . Biochim Biophys Acta 305:268–280
    [Google Scholar]
  26. Klingenberg M. 1965 Spectrophotometric and fluorimetric methods: nicotinamide adenine dinucleotides (NAD+, NADH, NADP+, NADPH).. In Methods of Enzymatic Analysis vol 4 2nd edn, pp 2045–2059 Edited by Bergmeyer H. U. New York & London: Academic Press;
    [Google Scholar]
  27. Krebs E. G. 1955; Glyceraldehyde-3-phosphate dehydrogenase from yeast.. Methods Enzymol 1:407–411
    [Google Scholar]
  28. Krebs H. A., Freedland R. A., Hems R., Stubbs M. 1969; Inhibition of hepatic gluconeogenesis by ethanol.. Biochem J 112:117–124
    [Google Scholar]
  29. Lamed R., Zeikus J. G. 1980; Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii . J Bacteriol 144:569–578
    [Google Scholar]
  30. Leschine S. B. 1995; Cellulose degradation in anaerobic environments.. Annu Rev Microbiol 49:399–426
    [Google Scholar]
  31. Lipmann F., Tuttle L. C. 1945; A specific micromethod for determination of acyl-phosphates.. J Biol Chem 159:21–28
    [Google Scholar]
  32. Lou J., Dawson K. A., Strobel H. J. 1996; Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola . Appl Environ Microbiol 62:1770–1773
    [Google Scholar]
  33. Lovitt R. W., Shen G. J., Zeikus J. G. 1988; Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum . J Bacteriol 170:2809–2815
    [Google Scholar]
  34. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugars.. Anal Chem 31:426–428
    [Google Scholar]
  35. Mortenson L. E., Valentine R. C., Carnahan J. E. 1963; Ferredoxin in the phosphoroclastic reaction of pyruvic acid and its relation to nitrogen fixation in Clostridium pasteurianum . J Biol Chem 238:794–800
    [Google Scholar]
  36. Morvan B., Rieu-Lesme F., Fonty G., Gouet P. 1996; In vitro interactions between rumen H2-producing cellulolytic micro-organisms and H2-utilizing acetogenic and sulfate reducing bacteria.. Anaerobe 2:175–180
    [Google Scholar]
  37. Ng T., Zeikus J. G. 1982; Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum . J Bacteriol 150:1391–1399
    [Google Scholar]
  38. Petitdemange H., Cherrier C., Raval G., Gay R. 1976; Regulation of the NADH and NADPH–ferredoxin oxido-reductases in Clostridia of the butyric group.. Biochim Biophys Acta 421:334–347
    [Google Scholar]
  39. Petitdemange E., Caillet F., Giallo J., Gaudin C. 1984; Clostridium cellulolyticum sp. nov., a cellulolytic mesophilic species from decayed grass.. Int J Syst Bacteriol 34:155–159
    [Google Scholar]
  40. Robson R. L., Robson R. M., Morris J. G. 1974; The biosynthesis of granulose by Clostridium pasteurianum . Biochem J 144:503–511
    [Google Scholar]
  41. Russell J. B., Bond D. R., Cook G. M. 1996; The fructose diphosphate/phosphate regulation of carbohydrate metabolism in low G + C Gram-positive anaerobes.. Res Microbiol 147:528–535
    [Google Scholar]
  42. Schimz K. L., Broll B., John B. 1983; Cellobiose phosphorylase (EC 2.4.1.20) of Cellulomonas: occurrence, induction, and its role in cellobiose metabolism.. Arch Microbiol 135:241–249
    [Google Scholar]
  43. Strobel H. J. 1995; Growth of the thermophilic bacterium Clostridium thermocellum in continuous culture.. Curr Microbiol 31:210–214
    [Google Scholar]
  44. Strobel H. J., Caldwell F. C., Dawson K. A. 1995; Carbohydrate transport by the anaerobic thermophile Clostridium thermocellum LQRI.. Appl Environ Microbiol 61:4012–4015
    [Google Scholar]
  45. Thauer R. K., Ruppecht E., Ohrloff C., Jungermann K., Decker K. 1971; Regulation of the reduced nicotinamide adenine dinucleotide phosphate-ferredoxin reductase system in Clostridium kluyveri . J Biol Chem 246:954–959
    [Google Scholar]
  46. Thurston B., Dawson K. A., Strobel H. J. 1993; Cellobiose versus glucose utilization by the ruminial bacterium Ruminococcus albus . Appl Environ Microbiol 59:2631–2637
    [Google Scholar]
  47. Vasconcelos I., Girbal L., Soucaille P. 1994; Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol.. J Bacteriol 176:1443–1450
    [Google Scholar]
  48. Weimer P. J. 1996; Why don’t ruminal bacteria digest cellulose faster?. J Dairy Sci 79:1496–1502
    [Google Scholar]
  49. Wells J. E., Russel J. B., Shi Y., Weimer P. J. 1995; Cello-dextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of non-adherent bacteria.. Appl Environ Microbiol 61:1757–1762
    [Google Scholar]
  50. Wimpenny J. W. T., Firth A. 1972; Levels of nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen.. J Bacteriol 111:24–32
    [Google Scholar]
  51. Wolin M. J., Miller T. L. 1988 Microbe–microbe interactions.. In The Rumen Microbial Ecosystem pp 361–386 Edited by Hobson P. N. London: Elsevier;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-2-375
Loading
/content/journal/micro/10.1099/00221287-144-2-375
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error