Site-directed mutagenesis of streptococcal plasmin receptor protein (Plr) identifies the C-terminal Lys334 as essential for plasmin binding, but mutation of the plr gene does not reduce plasmin binding to group A streptococci Winram, Scott B. and Lottenberg, Richard,, 144, 2025-2035 (1998), doi = https://doi.org/10.1099/00221287-144-8-2025, publicationName = Microbiology Society, issn = 1350-0872, abstract= Plasmin(ogen) binding is a common property of many pathogenic bacteria including group A streptococci. Previous analysis of a putative plasmin receptor protein, Plr, from the group A streptococcal strain 64/14 revealed that it is a glyceraldehyde-3-phosphate dehydrogenase and that the plr gene is present on the chromosome as a single copy. This study continues the functional characterization of Plr as a plasmin receptor. Attempts at insertional inactivation of the plr gene suggested that this single-copy gene may be essential for cell viability. Therefore, an alternative strategy was applied to manipulate this gene in vivo. Site-directed mutagenesis of Plr revealed that a C-terminal lysyl residue is required for wild-type levels of plasmin binding. Mutated Plr proteins expressed in Escherichia coli demonstrated reduced plasmin-binding activity yet retained glyceraldehyde-3-phosphate dehydrogenase activity. A novel integration vector was constructed to precisely replace the wild-type copy of the plr gene with these mutations. Isogenic streptococcal strains expressing altered Plr bound equivalent amounts of plasmin as wild-type streptococci. These data suggest that Plr does not function as a unique plasmin receptor, and underscore the need to identify other plasmin-binding structures on group A streptococci and to assess the importance of the plasminogen system in pathogenesis by inactivation of plasminogen activators and the use of appropriate animal models., language=, type=