1887

Abstract

An improved hybridization technique, HNPP-FISH, using 2-hydroxy-3-naphthoic acid 2′-phenylanilide phosphate (HNPP) and Fast Red TR was applied to analyse the community structure of planktonic bacteria in river water. Oligonucleotide probes specific for the domain Bacteria (EUB338) and five bacterial groups [ (rRNA III)-authentic (rRNA I); the genus ] were used to investigate the bacterial community structure at two sites differing in organic carbon pollution level. At the eutrophic site, 54-68% of all cells visualized by staining with DAPI (4′,6-diamidino-2-phenylindole) could be detected with probe EUB338. In samples from the oligotrophic site, 39-45% of the total cells hybridized with EUB338. At the eutrophic site, approximately 50% of the total cells were identified with the five group-specific probes; the bacterial community structure was dominated by the group and (rRNA III)-authentic group. At the oligotrophic site, only 26-38% of the total cells were identified with the five group-specific probes. The community structure at the oligotrophic site was similar to that at the eutrophic site, although the percentage of EUB338-detectable cells differed. No appreciable change was found in the community structure during the sampling period at either site. The improved HNPP-FISH technique should be a useful tool for the analysis of microbial community composition.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-8-2085
1998-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/8/mic-144-8-2085.html?itemId=/content/journal/micro/10.1099/00221287-144-8-2085&mimeType=html&fmt=ahah

References

  1. Alfreider A., Pernthaler J., Amann R., Sattler B., Glöckner F.O., Wille A., Psenner R. 1996; Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization.. Appl Environ Microbiol 62:2138–2144
    [Google Scholar]
  2. Amann R.I., Binder B.J., Olson R.J., Chisholm S.W., Devereux R., Stahl D.A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations.. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  3. Amann R.I., Ludwig W., Schleifer K.-H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation.. Microbiol Rev 59:143–169
    [Google Scholar]
  4. Belser L.W. 1979; Population ecology of nitrifying bacteria.. Annu Rev Microbiol 33:309–333
    [Google Scholar]
  5. Berger S.L., Kimmel A.R. 1987; Guide to molecular cloning techniques.. In Screening Colonies or Plaques with Radioactive Nucleic Acid Probes pp. 415–423 Edited by Wahl G. M., Berger S. L. New York: Academic Press;
    [Google Scholar]
  6. Flint K.P. 1985; A note on a selective agar medium for the enumeration of Flavobacterium species in water.. J Appl Bacterial 59:561–566
    [Google Scholar]
  7. Giovannoni S.J., Britschgi T.B., Moyer C.L., Field K.G. 1990; Genetic diversity in Sargasso Sea bacterioplankton.. Nature 345:60–63
    [Google Scholar]
  8. Glöckner F.O., Amann R., Alfleider A., Pernthaler L., Psenner R., Trebesius K., Field K.G. 1996; An in situ hybridization protocol for detection and identification of planktonic bacteria.. Syst Appl Microbiol 19:403–406
    [Google Scholar]
  9. Hicks R.E., Amann R.I., Stahl D.A. 1992; Dual staining of natural bacterioplankton with 4´,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences.. Appl Environ Microbiol 58:2158–2163
    [Google Scholar]
  10. Hodson R.E., Dustwan W.A., Garg R.P., Moran M.A. 1995; In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities.. Appl Environ Microbiol 61:4074–4082
    [Google Scholar]
  11. Kirchman D., K’nees E., Hodson R. 1985; Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems.. Appl Environ Microbiol 49:599–607
    [Google Scholar]
  12. Kogure K., Simidu U., Taga T. 1979; A tentative direct microscopic method for counting living marine bacteria.. Can J Microbiol 25:415–120
    [Google Scholar]
  13. Konda T., Tezuka Y. 1979; Bacterial flora in the water and sediment of lake Motosu-ko, an oligotrophic lake in central Japan.. Jpn J Ecol 29:209–220
    [Google Scholar]
  14. Kurokawa K., Tani K., Nasu M. 1997; Direct in situ PCR method for the detection of verotoxin-producing Escherichia coli. . Jpn J Bacteriol 52:513–518
    [Google Scholar]
  15. Lebaron P., Catala P., Fajon C., Joux F., Baudart J., Bernard L. 1997; A new sensitive, whole-cell hybridization technique for detection of bacteria involving a biotinylated oligonucleotide probe targeting rRNA and tyramide signal amplification.. Appl Environ Microbiol 63:3274–3278
    [Google Scholar]
  16. Lighthart B. 1975; A cluster analysis of some bacteria in the water column of Green Lake, Washington.. Can J Microbiol 21:392–394
    [Google Scholar]
  17. Lovley D.R. 1991; Dissimilatory Fe(III) and Mn(IV) reduction.. Microbiol Rev 55:259–287
    [Google Scholar]
  18. Maeda S. 1980; The flora of aerobic heterotrophic bacteria in the river Sagami.. Jpn J Limnol 41:163–171
    [Google Scholar]
  19. Nuttall D. 1982; The populations, characterization and activity of suspended bacteria in the Welsh River Dee.. J Appl Bacteriol 53:49–59
    [Google Scholar]
  20. Olsen R.A., Bakken L.R. 1987; Viability of soil bacteria, optimization of plate-counting technique and comparison between total counts and plate counts within different size groups.. Microb Ecol 13:59–74
    [Google Scholar]
  21. Peele E.R., Singleton F.L., Deming J.W., Cavari B., Colwell R.R. 1981; Effects of pharmaceutical wastes on microbial populations in surface waters at the Puerto Rico dump site in the Atlantic Ocean.. Appl Environ Microbiol 41:873–879
    [Google Scholar]
  22. Ramsing N.B., Kühl M., Jorgensen B.B. 1993; Distribution of sulfate-reducing bacteria, O2 and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes.. Appl Environ Microbiol 59:3840–3849
    [Google Scholar]
  23. Ramsing N.B., Fossing H., Ferdelman T.G., Andersen F., Thamdrup B. 1996; Distribution of bacterial populations in a stratified Fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column.. Appl Environ Microbiol 62:1391–1404
    [Google Scholar]
  24. Schhuber W., Fuchs B., Juretschko S., Amann R. 1997; Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification.. Appl Environ Microbiol 63:3268–3273
    [Google Scholar]
  25. Stahl D.A., Lane D.J., Olsen G.J., Pace N.R. 1985; Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences.. Appl Environ Microbiol 45:1379–1384
    [Google Scholar]
  26. Stopinski M. 1981; Studies on psychrophilic bacteria in two lakes of different trophy.. Acta Microbiol Pol 30:283–294
    [Google Scholar]
  27. Sugita H., Tanaami H., Kobashi T., Deguchi Y. 1982; Bacterial flora of the water and sediment in the Edo river mouth.. Jpn J Limnol 43:27–34
    [Google Scholar]
  28. Suzuki M.T., Giovannoni S.J. 1996; Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR.. Appl Environ Microbiol 62:625–630
    [Google Scholar]
  29. Teske A., Wawer C., Muyzer G., Ramsing N.B. 1996; Distribution of sulfate-reducing bacteria in a stratified Fjord (Manager Fjord, Denmark) as evaluated by most-probablenumber counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments.. Appl Environ Microbiol 62:1405–1415
    [Google Scholar]
  30. Torsvik V., Salte K., Sorheim R., Goksoyr J. 1990; Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria.. Appl Environ Microbiol 56:776–781
    [Google Scholar]
  31. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K.H. 1994; Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge.. Appl Environ Microbiol 60:792–800
    [Google Scholar]
  32. Wallner G., Amann R.I., Beisker W. 1993; Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms.. Cytometry 14:136–143
    [Google Scholar]
  33. Wallner G., Erhart R., Amann R. 1995; Flow cytometric analysis of activated sludge with rRNA-targeted probes.. Appl Environ Microbiol 61:1859–1866
    [Google Scholar]
  34. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 1991; 16S ribosomal DNA amplification for phylogenetic study.. J Bacterial 173:697–703
    [Google Scholar]
  35. Wolin M.J., Miller T.L. 1987; Bioconversion of organic carbon to CH4 and CO2.. Geomicrobiol J 5:239–260
    [Google Scholar]
  36. Yamaguchi N., Inaoka S., Tani K., Kenzaka T., Nasu M. 1996; Detection of specific bacterial cells with 2-hydroxy-3-naphthoic acid-2´-phenylanilide phosphate and Fast Red TR in situ hybridization.. Appl Environ Microbiol 62:275–278
    [Google Scholar]
  37. Yamaguchi N., Kenzaka T., Nasu M. 1997; Rapid in situ enumeration of physiologically active bacteria in river waters using fluorescent probes.. Microb Environ 12:1–8
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-8-2085
Loading
/content/journal/micro/10.1099/00221287-144-8-2085
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error