1887

Abstract

The genes and , encoding glycerol kinase and the glycerol facilitator of , a member of the Thermus/Deinococcus group, have recently been identified. The protein encoded by exhibited an unusually high degree of sequence identity (806%) when compared to the sequence of glycerol kinase from and a similar high degree of sequence identity (648%) was observed when the sequences of the glycerol facilitators of the two organisms were compared. The work presented in this paper demonstrates that is capable of taking up glycerol, that and are expressed constitutively and that glucose exerts a repressive effect on the expression of these genes. was found to possess the general components of the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS) enzyme I and histidine-containing protein (HPr). These proteins catalyse the phosphorylation of glycerol kinase, which contains a histidyl residue equivalent to His-232, the site of PEP-dependent, PTS-catalysed phosphorylation in glycerol kinase of . Purified glycerol kinase from could also be phosphorylated with enzyme I and HPr from . Similar to enterococcal glycerol kinases, phosphorylated glycerol kinase exhibited an electrophoretic mobility on denaturing and non-denaturing polyacrylamide gels that is different from the electrophoretic mobility of non-phosphorylated glycerol kinase. However, in contrast to PEP-dependent phosphorylation of enterococcal glycerol kinases, which stimulated glycerol kinase activity about 10-fold, phosphorylation of glycerol kinase caused only a slight increase in enzyme activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3205
1999-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453205a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3205&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. . J Bacteriol 81:741–746
    [Google Scholar]
  2. Beijer L., Rutberg L. 1992; Utilisation of glycerol and glycerol 3-phosphate is differently affected by the phosphotransferase system in Bacillus subtilis. . FEMS Microbiol Lett 79:217–220
    [Google Scholar]
  3. Charrier V., Buckley E., Parsonage D., Galinier A., Darbon E., Jaquinod M., Forest E., Deutscher J., Claiborne A. 1997; Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue. J Biol Chem 272:14166–14174 [CrossRef]
    [Google Scholar]
  4. de Crécy-Lagard, V., Binet M., Danchin A. 1995; Fructose phosphotransferase system of Xanthomonas campestris pv. campestris: characterization of the fruB gene. Microbiology 141:2253–2260 [CrossRef]
    [Google Scholar]
  5. De Boer M., Broekhuizen C. P., Postma P. W. 1986; Regulation of the glycerol kinase by enzyme IIIGlc of the phosphoenolpyruvate:carbohydrate phosphotransferase system. J Bacteriol 67:393–395
    [Google Scholar]
  6. Deutscher J. 1985; Phosphoenolpyruvate-dependent phosphorylation of a 55 kDa protein of Streptococcus faecalis catalysed by the phosphotransferase system. FEMS Microbiol Lett 29:237–243 [CrossRef]
    [Google Scholar]
  7. Deutscher J., Sauerwald H. 1986; Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system. J Bacteriol 166:829–836
    [Google Scholar]
  8. Deutscher J., Bauer B., Sauerwald H. 1993; Regulation of glycerol metabolism in Enterococcus faecalis by phosphoenolpyruvate-dependent phosphorylation of glycerol kinase catalyzed by enzyme I and HPr of the phosphotransferase system. J Bacteriol 175:3730–3733
    [Google Scholar]
  9. Galinier A., Haiech J., Kilhoffer M. C., Jaquinod M., Stülke J., Deutscher J., Martin-Verstraete I. 1997; The Bacillus subtilis crh gene encodes an HPr-like protein involved in carbon-catabolite repression. Proc Natl Acad Sci USA 94:8439–8444 [CrossRef]
    [Google Scholar]
  10. Gonzy-Treboul G., de Waard J. H., Zagorec M., Postma P. W. 1991; The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIGlc and IIIGlc domains. Mol Microbiol 5:1241–1249 [CrossRef]
    [Google Scholar]
  11. Heller K. B., Lin E. C. C., Wilson T. H. 1980; Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. . J Bacteriol 144:274–278
    [Google Scholar]
  12. Hengstenberg W., Penberthy W. K., Hill K. L., Morse M. L. 1969; Phosphotransferase system of Staphylococcus aureus: its requirement for the accumulation and metabolism of galactosides. J Bacteriol 99:383–388
    [Google Scholar]
  13. Holmberg C., Beijer L., Rutberg B., Rutberg L. 1990; Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). J Gen Microbiol 136:2367–2375 [CrossRef]
    [Google Scholar]
  14. Huang H. S., Yoshida T., Meng Y., Kabashima T., Ito I., Nishiya Y., Kawamura Y., Yoshimoto T. 1997; Purification and characterization of thermostable glycerol kinase from Thermus flavus. J Ferment Bioeng 83:328–332 [CrossRef]
    [Google Scholar]
  15. Huang H. S., Kabashima T., Ito K., Yin C. H., Nishiya Y., Kawamura Y., Yoshimoto T. 1998a; Thermostable glycerol kinase from Thermus flavus: cloning, sequencing, and expression of the enzyme gene. Biochim Biophys Acta 1382:186–190 [CrossRef]
    [Google Scholar]
  16. Huang H. S., Ito K., Yin C. H., Kabashima T., Yoshimoto T. 1998b; Cloning, sequencing, high expression, and crystallization of the thermophile Thermus aquaticus glycerol kinase. Biosci Biotechnol Biochem 62:2375–2381 [CrossRef]
    [Google Scholar]
  17. Hurley J. H., Faber H. R., Worthylake D., Meadow N. D., Roseman S., Pettigrew D. W., Remington S. J. 1993; Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase. Science 259:673–677 [CrossRef]
    [Google Scholar]
  18. Kalbitzer H. R., Hengstenberg W., Rösch P., Muss P., Bernsmann P., Engelmann R., Dörschug M., Deutscher J. 1982; HPr proteins of different microorganisms studied by hydrogen-1 high resolution nuclear magnetic resonance: similarities of structures and mechanisms. Biochemistry 21:2879–2885 [CrossRef]
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  20. Lin E. C. C. 1976; Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30:535–578 [CrossRef]
    [Google Scholar]
  21. Reizer J., Peterkofsky A. 1987; Regulatory mechanisms for sugar transport in Gram-positive bacteria. In Sugar Transport and Metabolism in Gram-Positive Bacteria pp. 333–364Edited by Reizer J., Peterkofsky A. Chichester, UK: Ellis Horwood;
    [Google Scholar]
  22. Reizer J., Novotny M. J., Stuiver I., Saier M. H. Jr 1984; Regulation of glycerol uptake by the phosphoenolpyruvate-sugar phosphotransferase system in Bacillus subtilis. . J Bacteriol 159:243–250
    [Google Scholar]
  23. Romano A. H., Saier M. H. Jr, Harriott O. T., Reizer J. 1990; Physiological studies on regulation of glycerol utilization by the phosphoenolpyruvate:sugar phosphotransferase system in Enterococcus faecalis. . J Bacteriol 172:6741–6748
    [Google Scholar]
  24. Roossien F. F., Brink J., Robillard G. T. 1983; A simple procedure for the synthesis of [32P]phosphoenolpyruvate via the pyruvate kinase exchange reaction at equilibrium. Biochim Biophys Acta 760:185–187 [CrossRef]
    [Google Scholar]
  25. Saier M. H. Jr, Simoni R. D., Roseman S. 1976; Sugar transport. IX. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate:sugar phosphotransferase system. J Biol Chem 251:6584–6597
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. van der Vlag J., van Dam K., Postma P. W. 1994; Quantification of the regulation of glycerol and maltose metabolism by IIAGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system in Salmonella typhimurium. . J Bacteriol 176:3518–3526
    [Google Scholar]
  28. Waygood E. B., Mattoo R. L., Erickson E., Vadeboncoeur C. 1986; Phosphoproteins and the phosphoenolpyruvate:sugar phosphotransferase system of Streptococcus salivarius: detection of two different ATP-dependent phosphorylations of the phosphocarrier protein HPr. Can J Microbiol 32:310–318 [CrossRef]
    [Google Scholar]
  29. Wehtje C., Beijer L., Nilsson R. P., Rutberg B. 1995; Mutations in the glycerol kinase gene restore the ability of a ptsGHI mutant of Bacillus subtilis to grow on glycerol. Microbiology 141:1193–1198 [CrossRef]
    [Google Scholar]
  30. Wu L.-F., Tomich J. M., Saier M. H. Jr 1990; Structure and evolution of a multidomain multiphosphoryl transfer protein: nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. J Mol Biol 213:687–703 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-11-3205
Loading
/content/journal/micro/10.1099/00221287-145-11-3205
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error