1887

Abstract

16S rDNA clone libraries were analysed to investigate the microbial diversity in marine sediments from Sagami Bay (stations SA, water depth of 1159 m, and SB, 1516 m) and Tokyo Bay (station TK, 43 m). A total of 197 clones was examined by amplified rDNA restriction analysis (ARDRA) using three four-base-specific restriction enzymes (I, I and III). In SA, 57 RFLP types were detected from 77 clones. In SB, 17 RFLP types were detected from 62 clones. In TK, 21 RFLP types were detected from 58 clones. The genotypic diversity among the three sampling sites was 0958, 0636 and 0821, respectively, indicating that the microbial diversity of SA was higher than at the other two stations. At SA, the most abundant RFLP type constituted 10% of all clones. The samples from SB and TK had dominant RFLP types which constituted 60% and 38% of the total clone libraries, respectively. The community structure of SA included many single-type clones, which were found only once in the clone libraries. This structure contrasted with that of the other two stations. Thirty-seven clones were selected and sequenced according to dendrograms derived from ARDRA, to cover most of the microbial diversity in the clone libraries. No clones were identical to any of the known 16S rRNA sequences or to each other. All sequences had >848% similarity to rDNA sequences retrieved from the DNA databases. Sequenced clones fell into five major lineages of the domain : the gamma, delta and epsilon , Gram-positive bacteria and the division . At SA, the and the three subclasses of the were found. Most clone sequences belonged to the gamma . The high-GC Gram-positive bacteria and the gamma subclass of the were common at both SB and TK. Although the depths of SB and TK were very different, the community diversity inferred from ARDRA and the taxonomic position of the dominant clones were similar. All clones belonging to the high-GC Gram-positive bacteria collected from both SB and TK fell into the same cluster and are regarded as members of an unknown actinomycete group. The clone compositions were different at each sampling site, and clones of the gamma and high-GC Gram-positive bacteria were dominant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3305
1999-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453305a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3305&mimeType=html&fmt=ahah

References

  1. Adkins J. P., Madigan M. T., Mandelco L., Woese C. R., Tanner R. S. 1993; Arhodomonas aquaeolei gen. nov., sp. nov., an aerobic, halophilic bacterium isolated from a subterranean brine. Int J Syst Bacteriol 43:514–520 [CrossRef]
    [Google Scholar]
  2. Amann R. I., Ludwig W., Schleifer K.-H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  3. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. 1994; Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613 [CrossRef]
    [Google Scholar]
  4. Boivin-Jahns V., Bianchi A., Ruimy R., Garcin J., Daumas S., Christen R. 1995; Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl Environ Microbiol 61:3400–3406
    [Google Scholar]
  5. Britschgi T. B., Giovannoni S. J. 1991; Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ Microbiol 57:1707–1713
    [Google Scholar]
  6. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805 [CrossRef]
    [Google Scholar]
  7. Cary S. C., Cottrell M. T., Stein J. L., Camacho F., Desbruyeres D. 1997; Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl Environ Microbiol 63:1124–1130
    [Google Scholar]
  8. Chandler D. P., Fredrickson J. K., Brockman F. J. 1997; Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol Ecol 6:475–482 [CrossRef]
    [Google Scholar]
  9. Coastal Oceanography Research Committee, The Oceanographical Society of Japan 1985 Coastal Oceanography of Japanese Islands Tokyo: Tokai University Press; in Japanese
    [Google Scholar]
  10. DeLong E. D. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689 [CrossRef]
    [Google Scholar]
  11. DeLong E. F., Franks D. G., Alldredge A. L. 1993; Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934 [CrossRef]
    [Google Scholar]
  12. DeLong E. F., Wu K. Y., Prezelin B. B., Jovine R. V. M. 1994; High abundance of Archaea in Antarctic marine picoplankton. Nature 371:695–697 [CrossRef]
    [Google Scholar]
  13. Distel D. L., Wood A. P. 1992; Characterization of the gill symbiont of Thyasira flexuosa (Thyasiridae: Bivalvia) by use of polymerase chain reaction and 16S rRNA sequence analysis. J Bacteriol 174:6317–6320
    [Google Scholar]
  14. Durand P., Gros O. 1996; Bacterial host specificity of Lucinacea endosymbionts: interspecific variation in 16S rRNA sequences. FEMS Microbiol Lett 140:193–198 [CrossRef]
    [Google Scholar]
  15. Eden P. A., Schmidt T. M., Blakemore R. P., Pace N. R. 1991; Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Bacteriol 41:324–325 [CrossRef]
    [Google Scholar]
  16. Edwards D. B., Nelson D. C. 1991; DNA–DNA solution hybridization studies of the bacterial symbionts of hydrothermal vent tube worms (Riftia pachyptila and Tevnia jerichonana). Appl Environ Microbiol 57:1082–1088
    [Google Scholar]
  17. Farrelly V., Rainey F. A., Stackebrandt E. 1995; Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61:2798–2801
    [Google Scholar]
  18. Feldman R. A., Black M. B., Cary G. S., Lutz R. A., Vrijenhoek R. C. 1997; Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mol Mar Biol Biotechnol 6:268–277
    [Google Scholar]
  19. Fuhrman J. A., Davis A. A. 1997; Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150:275–285 [CrossRef]
    [Google Scholar]
  20. Fuhrman J. A., McCallum K., Davis A. A. 1992; Novel major archaebacterial group from marine plankton. Nature 356:148–149 [CrossRef]
    [Google Scholar]
  21. Fuhrman J. A., McCallum K., Davis A. A. 1993; Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol 59:1294–1302
    [Google Scholar]
  22. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. 1990; Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–62 [CrossRef]
    [Google Scholar]
  23. Good I. J. 1953; The population frequencies of species and the estimation of population parameters. Biometrica 40:237–264 [CrossRef]
    [Google Scholar]
  24. Gray J. P., Herwig R. P. 1996; Phylogenetic analysis of the bacterial communities in marine sediments. Appl Environ Microbiol 62:4049–4059
    [Google Scholar]
  25. Haddad A., Camacho F., Durand P., Cary S. C. 1995; Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl Environ Microbiol 61:1679–1687
    [Google Scholar]
  26. Hashimoto J., Ohta S., Tanaka T., Hotta H., Matsuzawa S., Sakai H. 1989; Deep-sea communities dominated by the giant clam, Calyptogena soyoae, along the slope foot of Hatsushima Island, Sagami Bay, central Japan. Palaeoclimatol Palaeoecol 71:179–192 [CrossRef]
    [Google Scholar]
  27. Hedlund B. P., Gosink J. J., Staley J. T. 1997; Verrucomicrobia div. nov., a new division of the Bacteria containing three new species of Prosthecobacter. Antonie Leeuwenhoek 72:29–38 [CrossRef]
    [Google Scholar]
  28. Hiraishi A., Ueda Y., Ishihara J. 1998; Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl Environ Microbiol 64:992–998
    [Google Scholar]
  29. Holben W. E., Jansson J. K., Chelm B. K., Tiedje J. M. 1988; DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703–711
    [Google Scholar]
  30. Hugenholtz P., Pitulle C., Hershberger K. L., Pace N. R. 1998; Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376
    [Google Scholar]
  31. Janssen P. H., Schuhmann A., Morschel E., Rainey F. A. 1997; Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63:1382–1388
    [Google Scholar]
  32. Jensen P. R., Fenical W. 1995; The relative abundance and seawater requirements of gram-positive bacteria in near-shore tropical marine samples. Microb Ecol 29:249–257 [CrossRef]
    [Google Scholar]
  33. Jones M. L., Gardiner S. L. 1989; On the early development of the vestimentiferan tube worm Ridgeia sp. and observations on the nervous system and trophosome of Ridgeia sp. and Riftia pachyptila. Biol Bull 177:254–276 [CrossRef]
    [Google Scholar]
  34. Kerkhof L., Speck M. 1997; Ribosomal RNA gene dosage in marine bacteria. Mol Mar Biol Biotechnol 6:260–267
    [Google Scholar]
  35. Kim Y. W., Yasuda M., Yamagishi A., Oshima T., Ohta S. 1995; Characterization of the endosymbiont of a deep-sea bivalve, Calyptogena soyoae. Appl Environ Microbiol 61:823–827
    [Google Scholar]
  36. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  37. Kuske C. R., Barns S. M., Busch J. D. 1997; Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl Environ Microbiol 63:3614–3621
    [Google Scholar]
  38. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–148Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  39. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959 [CrossRef]
    [Google Scholar]
  40. Liesack W., Stackebrandt E. 1992; Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol 174:5072–5078
    [Google Scholar]
  41. McInerney J. O., Wilkinson M., Patching J. W., Embley T. M., Powell R. 1995; Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl Environ Microbiol 61:1646–1648
    [Google Scholar]
  42. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1997; The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–111 [CrossRef]
    [Google Scholar]
  43. Moran M. A., Rutherford L. T., Hodson R. E. 1995; Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe. Appl Environ Microbiol 61:3695–3700
    [Google Scholar]
  44. Moyer C. L., Dobbs F. C., Karl D. M. 1994; Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol 60:871–879
    [Google Scholar]
  45. Moyer C. L., Dobbs F. C., Karl D. M. 1995; Phylogenetic diversity of the bacterial community from a microbial mat at an active hydrothermal vent system, Loichi Seamount, Hawaii. Appl Environ Microbiol 61:1555–1562
    [Google Scholar]
  46. Mullins T. D., Britschgi T. B., Krest R. L., Giovannoni S. J. 1995; Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr 40:148–158 [CrossRef]
    [Google Scholar]
  47. Nei M. 1987 Molecular Evolutionary Genetics New York: Columbia University Press;
    [Google Scholar]
  48. Nei M., Li W. H. 1979; Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273 [CrossRef]
    [Google Scholar]
  49. Novitsky J. A. 1990; Evidence for sedimenting particles as the origin of the microbial community in a coastal marine sediment. Mar Ecol Prog Ser 60:161–167 [CrossRef]
    [Google Scholar]
  50. Ohkuma M., Kudo T. 1996; Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468
    [Google Scholar]
  51. Porter K. G., Feig Y. C. 1980; The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  52. Rajendran N., Matsuda O., Urushigawa Y., Simidu U. 1994; Characterization of microbial community structure in the surface sediment of Osaka Bay, Japan, by phospholipid fatty acid analysis. Appl Environ Microbiol 60:248–257
    [Google Scholar]
  53. Rath J., Wu K. Y., Herndl G. J., DeLong E. F. 1998; High phylogenetic diversity in a marine-snow-associated bacterial assemblage. Aquat Microb Ecol 14:261–269 [CrossRef]
    [Google Scholar]
  54. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  55. Schallenberg M., Kalff J., Rasmussen J. B. 1989; Solutions to problems in enumerating sediment bacteria by direct counts. Appl Environ Microbiol 55:1214–1219
    [Google Scholar]
  56. Schleper C., Holben W., Klenk H.-P. 1997; Recovery of Crenarchaeotal ribosomal DNA sequences from freshwater-lake sediments. Appl Environ Microbiol 63:321–323
    [Google Scholar]
  57. Schmidt T. E., DeLong E. F., Pace N. R. 1991; Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173:4371–4378
    [Google Scholar]
  58. Sekiguchi Y., Kamagata Y., Syutsubo K., Ohashi A., Harada H., Nakamura K. 1998; Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144:2655–2665 [CrossRef]
    [Google Scholar]
  59. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy San Francisco: W. H. Freeman.;
    [Google Scholar]
  60. Stackebrandt E., Liesack W., Goebel B. M. 1993; Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J 7:232–236
    [Google Scholar]
  61. Stahl D. A., Amann R. 1991; Development and application of nucleic acid probes. In Nucleic Acid Techniques in Bacterial Systematics pp. 205–248Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  62. Suzuki M. T., Giovannoni S. J. 1996; Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630
    [Google Scholar]
  63. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  64. Torsvik V., Goksoyr J., Daae F. L. 1990; High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787
    [Google Scholar]
  65. Ueda T., Suga Y., Matsuguchi T. 1995; Molecular phylogenetic analysis of a soil microbial community in a soybean field. Eur J Soil Sci 46:415–421 [CrossRef]
    [Google Scholar]
  66. Urakawa H., Kita-Tsukamoto K., Ohwada K. 1997; 16S rDNA genotyping using PCR/RFLP (restriction fragment length polymorphism) analysis among the family Vibrionaceae. FEMS Microbiol Lett 152:125–132 [CrossRef]
    [Google Scholar]
  67. Urakawa H., Kita-Tsukamoto K., Ohwada K. 1998a; A new approach to separate the genus Photobacterium from Vibrio with RFLP patterns by HhaI digestion of PCR-amplified 16S rDNA. Curr Microbiol 36:171–174 [CrossRef]
    [Google Scholar]
  68. Urakawa H., Kita-Tsukamoto K., Steven S. E., Ohwada K., Colwell R. R. 1998b; A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol Lett 165:373–378 [CrossRef]
    [Google Scholar]
  69. Urakawa H., Kita-Tsukamoto K., Ohwada K. 1999; Reassessment of the taxonomic position of Vibrio iliopiscarius (Onarheim et al. 1994) and proposal for Photobacterium iliopiscarium comb. nov. Int J Syst Bacteriol 49:257–260 [CrossRef]
    [Google Scholar]
  70. Velji M. I., Albright L. J. 1986; Microscopic enumeration of attached marine bacteria of seawater, marine sediment, fecal matter, and kelp blade samples following pyrophosphate and ultrasound treatments. Can J Microbiol 32:121–126 [CrossRef]
    [Google Scholar]
  71. Ward D. M., Weller R., Bateson M. 1990; 16S rRNA sequences reveal numerous uncultured organisms in a natural community. Nature 345:63–65 [CrossRef]
    [Google Scholar]
  72. Wilson K. H., Blitchington R. B. 1996; Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62:2273–2278
    [Google Scholar]
  73. Wise M. G., McArthur J. V., Shimkets L. J. 1997; Bacterial diversity of a Carolina Bay as determined by 16S rRNA gene analysis: confirmation of novel taxa. Appl Environ Microbiol 63:1505–1514
    [Google Scholar]
  74. Zhou J.-Z., Davey M. E., Figures J. B., Rivkina E., Gilichinsky D., Tiedje J. M. 1997; Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143:3913–3919 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-11-3305
Loading
/content/journal/micro/10.1099/00221287-145-11-3305
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error