1887

Abstract

During infections with a number of important eukaryotic pathogens the Hsp90 molecular chaperone of the pathogen is recognized as an immunodominant antigen by the host immune system. Yeast molecular genetics should allow study of the extent of sequence variation within conserved immunodominant epitopes on pathogen Hsp90s that is compatible with essential Hsp90 functions, as well as the processes that generate antigenic subfragments of these Hsp90s. The Hsp90 of the fungal pathogen was shown in this study to provide both essential and nonessential (pheromone signalling and mammalian steroid receptor activation) Hsp90 functions in cells. Much of the Hsp90 expressed in respiratory cells was shown to undergo a partial degradation , a degradation that closely resembles that of the native Hsp82 (one isoform of the homologous Hsp90) in . Allowing for the differences in the length of the charged linker region between the N- and C-terminal domains of Hsp90 and Hsp82, these two proteins expressed in appear to give the same major degradation products. These Hsp90 fragments are similar to the products of incomplete Hsp90 degradation found in cultures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-12-3455
1999-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/12/1453455a.html?itemId=/content/journal/micro/10.1099/00221287-145-12-3455&mimeType=html&fmt=ahah

References

  1. Angiolella L., Facchin M., Stringaro A., Maras B., Simonetti N., Cassone A. 1996; Identification of a glucan- associated enolase as a main cell wall protein of Candida albicans and an indirect target of lipopeptide antimycotics. . J Infect Dis 173:684–690 [CrossRef]
    [Google Scholar]
  2. Bohen S. P. 1998; Genetic and biochemical analysis of p23 and ansamycin antibiotics in the function of Hsp90-dependent signalling proteins. Mol Cell Biol 18:3330–3339
    [Google Scholar]
  3. Bonnefoy S., Gysin J., Blisnick T., Guillotte M., Carcy B., Pereira da Silva L., Mercereau-Puijalon O. 1994; Immunogenicity and antigenicity of a Plasmodium falciparum protein fraction (90–110 kDa) able to protect squirrel monkeys against asexual blood stages. Vaccine 12:32–40 [CrossRef]
    [Google Scholar]
  4. Borkovich K. A., Farrely F. W., Finkelstein D. B., Taulein J., Lindquist S. 1989; Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperature. Mol Cell Biol 9:3919–3930
    [Google Scholar]
  5. Bromuro C., La Valle, R., Sandini, S., Urbani, F., Ausiello, C. M., Morelli, L., Fe d’Ostiani, C., Romani L., Cassone A. 1998; A 70-kilodalton heat shock protein of Candida albicans is highly immunogenic and enhances systemic murine candidiasis. Infect Immun 66:2154–2162
    [Google Scholar]
  6. Brunt S. A., Riehl R., Silver J. C. 1990; Steroid hormone regulation of the Achlya ambisexualis 85-kilodalton heat shock protein, a component of the Achlya steroid receptor complex. . Mol Cell Biol 10:273–281
    [Google Scholar]
  7. Caplan A. J. 1997; Yeast molecular chaperones and the mechanism of steroid hormone action. . Trends Endocrinol Metab 8:271–276 [CrossRef]
    [Google Scholar]
  8. Chang H. C. J., Lindquist S. 1994; Conservation of Hsp90 macromolecular complexes in Saccharomyces cerevisiae. . J Biol Chem 269:24983–24988
    [Google Scholar]
  9. Cheng L., Hirst K., Piper P. W. 1992; Authentic temperature- regulation of a heat shock gene inserted into yeast on a high copy number vector. Influences of overexpression of HSP90 protein on high temperature growth and thermotolerance. Biochim Biophys Acta 1132:26–34 [CrossRef]
    [Google Scholar]
  10. Dragon E. A., Sias S. R., Kato E. A., Gabe J. D. 1987; The genome of Trypanosoma cruzi contains a constitutively expressed, tandemly arranged multicopy gene homologous to a major heat shock protein. Mol Cell Biol 7:1271–1275
    [Google Scholar]
  11. Duina A. A., Kalton H. M., Gaber R. F. 1998; Requirement for Hsp90 and a Cyp-40-type cyclophilin in negative regulation of the heat shock response. J Biol Chem 273:18974–18978 [CrossRef]
    [Google Scholar]
  12. Finley D., Ozkaynak E., Varshavsky A. 1987; The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses. Cell 48:1035–1046 [CrossRef]
    [Google Scholar]
  13. Franklin K. M., Warmington J. R., Ott A. K., Ashman R. B. 1990; An immunodominant antigen of Candida albicans shows homology to the enzyme enolase. Immunol Cell Biol 68:173–178 [CrossRef]
    [Google Scholar]
  14. Garabedian M. J., Yamamoto K. R. 1992; Genetic dissection of the signalling domain of a mammalian steroid receptor in yeast. Mol Biol Cell 3:1245–1257 [CrossRef]
    [Google Scholar]
  15. Gething M.-J., Sambrook J. 1992; Protein folding in the cell. Nature 355:33–45 [CrossRef]
    [Google Scholar]
  16. Gietz R. D., Sugino A. 1988; New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base-pair restriction sites. Gene 74:527–534 [CrossRef]
    [Google Scholar]
  17. Gomez F. J., Allendoerfer R., Deepe G. S. 1995; Vaccination with recombinant heat shock protein from Histoplasma capsulatum protects mice against pulmonary histoplasmosis. Infect Immun 63:2587–2595
    [Google Scholar]
  18. Hershko A., Ciechanover A. 1998; The ubiquitin system. . Annu Rev Biochem 67:425–479 [CrossRef]
    [Google Scholar]
  19. Hodgetts S., Matthews R., Morrissey G., Mitsutake K., Piper P., Burnie J. 1996; Over-expression of Saccharomyces cerevisiae hsp90 enhances the virulence of this yeast in mice. FEMS Immunol Med Microbiol 16:229–234 [CrossRef]
    [Google Scholar]
  20. Johnson K. S., Wells K., Bock J. V., Nene V., Taylor D. W., Cordingley J. S. 1989; The 86-kilodalton antigen from Schistosoma mansoni is a heat-shock protein homologous to yeast HSP-90. Mol Biochem Parasitol 36:19–28 [CrossRef]
    [Google Scholar]
  21. Jones E. W. 1991; Three proteolytic systems in the yeast Saccharomyces cerevisiae. . J Biol Chem 266:7963–7966
    [Google Scholar]
  22. Kumari S., Lillibridge C. D., Bakeer, M., Lowrie, R. C., Jayaraman K., Philipp M. T. 1994; Brugia malayi : the diagnostic potential of recombinant excretory/secretory antigens. Exp Parasitol 79:489–505 [CrossRef]
    [Google Scholar]
  23. Lopez-Ribot, J. L., Alloush H. M., Masten B. J., Chaffin W. L. 1996; Evidence for presence in the cell wall of Candida albicans of a protein related to the hsp70 family. Infect Immun 64:3333–3340
    [Google Scholar]
  24. Louvion, J.-F., Warth R., Picard D. 1996; Two eukaryote-specific regions of Hsp82 are dispensible for its viability and signal transduction functions in yeast. Proc Natl Acad Sci USA 93:13937–13942 [CrossRef]
    [Google Scholar]
  25. Louvion, J.-F., Abbas-Terki T., Picard D. 1998; Hsp90 is required for pheromone signalling in yeast. Mol Biol Cell 9:3071–3083 [CrossRef]
    [Google Scholar]
  26. Lowrie D. B., Jascon R. E., Colston M. J., Silva C. L. 1994; Towards a DNA vaccine against tuberculosis. Vaccine 12:1537–1540 [CrossRef]
    [Google Scholar]
  27. Madani N. D., Malloy, P. J., Rodriguez-Pombo P., Krishnan A. V., Feldman D. 1994; Candida albicans estrogen- binding protein gene encodes an oxidoreductase that is inhibited by estradiol. Proc Natl Acad Sci USA 91:922–926 [CrossRef]
    [Google Scholar]
  28. Malloy P. J., Zhao X., Madani N. D., Feldman D. 1993; Cloning and expression of the gene from Candida albicans that encodes a high-affinity corticosteroid-binding protein. Proc Natl Acad Sci USA 90:1902–1906 [CrossRef]
    [Google Scholar]
  29. Matthews R. C. 1994; Pathogenicity determinants of Candida albicans: potential targets for immunotherapy?. Microbiology 140:1505–1511 [CrossRef]
    [Google Scholar]
  30. Matthews R. C., Burnie J. P. 1989; Cloning of a DNA sequence encoding a major fragment of the 47 kilodalton stress protein homologue of Candida albicans. FEMS Microbiol Lett 60:25–30 [CrossRef]
    [Google Scholar]
  31. Matthews R., Burnie J. 1996; Antibodies against Candida: potential therapeutics?. Trends Microbiol 4:354–358 [CrossRef]
    [Google Scholar]
  32. Matthews R. C., Burnie J. P., Tabaqchali S. 1987; Isolation of immunodominant antigens from sera of patients with systemic candidasis and characterization of serological response to Candida albicans. . J Clin Microbiol 25:230–237
    [Google Scholar]
  33. Matthews R. C., Burnie J. P., Howat D. T. R., Walton F. 1991; Autoantibody to Hsp90 can mediate protection against systemic candidosis. Immunol 74:20–24
    [Google Scholar]
  34. Matthews R. C., Hodgetts S., Burnie J. P. 1995; Preliminary assessment of a human recombinant antibody fragment to hsp90 in murine invasive candidiasis. J Infect Dis 171:1668–1671 [CrossRef]
    [Google Scholar]
  35. Nathan D. F., Lindquist S. 1995; Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. . Mol Cell Biol 15:3917–3925
    [Google Scholar]
  36. Panaretou B., Prodromou C., Roe S. M., O’Brien, R., Ladbury J. E., Piper P. W., Pearl L. H. 1998; ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17:4829–4836 [CrossRef]
    [Google Scholar]
  37. Pratt W. B., Dittmar K. D. 1998; Studies with purified chaperones advance the understanding of the mechanism of glucocorticoid receptor–hsp90 heterocomplex assembly. . Trends Endocrinol Metab 9:244–252 [CrossRef]
    [Google Scholar]
  38. Prodromou C., Roe S. M., O’Brien, R., Ladbury J. E., Piper P. W., Pearl L. H. 1997; Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75 [CrossRef]
    [Google Scholar]
  39. Rutherford S. L., Lindquist S. 1998; Hsp90 as a capacitor for morphological evolution. Nature 396:336–342 [CrossRef]
    [Google Scholar]
  40. Salotra P., Chauhan D., Ralhan R., Bhatnagar R. 1995; Tumour necrosis factor-α induces preferential expression of stress proteins in virulent promastigotes of Leishmania donovani. Immunol Lett 44:1–5 [CrossRef]
    [Google Scholar]
  41. Santos M. A., Keith G., Tuite M. F. 1993; Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5′-CAG-3′ (leucine) anticodon. . EMBO J 12:607–616
    [Google Scholar]
  42. Schena M., Freedman L. P., Yamamoto K. R. 1989; Mutations in the glucocorticoid receptor zinc finger region that distinguish interdigitated DNA binding and transcriptional enhancement activities. . Genes Dev 3:1590–1601 [CrossRef]
    [Google Scholar]
  43. Sinclair K. E. 1998 Effect of the yeast ubiquitination system on proteins accumulated at the entry to stationary phase PhD thesis University of London;
    [Google Scholar]
  44. Skeiky Y. A., Benson D. R. B., Guderian J. A., Whittle J. A., Bacelar O., Carvalho E. M., Reed D. G. 1995; Immune responses of leishmaniasis patients to heat shock proteins of Leishmania species and humans. Infect Immun 63:4105–4114
    [Google Scholar]
  45. Streit J. A., Donelson J. E., Agey M. W., Wilson M. E. 1996; Developmental changes in the expression of Leishmania chagasi pg63 and heat shock protein in a human macrophage cell line. Infect Immun 64:1810–1818
    [Google Scholar]
  46. Swoboda R. K., Bertram G., Budge S., Gooday G. W., Gow N. A. R., Brown A. J. P. 1996; Structure and function of the HSP90 gene from the pathogenic fungus Candida albicans. Infect Immun 63:4506–4514
    [Google Scholar]
  47. Toft D. O. 1998; Recent advances in the study of hsp90 structure and mechanism of action. Trends Endocrinol Metab 9:238–243 [CrossRef]
    [Google Scholar]
  48. Young D. B. 1992; Heat shock proteins – immunity and autoimmunity. . Curr Opin Immunol 4:396–400 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-12-3455
Loading
/content/journal/micro/10.1099/00221287-145-12-3455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error