1887

Abstract

has been widely used for 40 years as a safe biopesticide for controlling agricultural pests and mosquitoes because it produces insecticidal crystal proteins. However, spores have also been shown to contribute to overall entomopathogenicity. Here, the opportunistic properties of acrystalliferous Cry and strains were investigated in an insect species, , and in a mammal, BALB/c mice. In both animal models, the pathogenicity of the two bacterial species was similar. Mutant strains were constructed in which the gene, encoding a pleiotropic regulator of extracellular factors, was disrupted. In larvae, co-ingestion of 10 spores of the parental strain with a sublethal concentration of Cry1C toxin caused 70% mortality whereas only 7% mortality was recorded if spores of the Δ mutant strain were used. In mice, nasal instillation of 10 spores of the parental strain caused 100% mortality whereas instillation with the same number of Δ strain spores caused much lower or no mortality Similar effects were obtained if vegetative cells were used instead of spores. The cause of death is unknown and is unlikely to be due to actual growth of the bacteria in mice. The lesions caused by supernatant in infected mice suggested that haemolytic toxins were involved. The cytolytic properties of strains of and , using sheep, horse and human erythrocytes and haemocytes, were therefore investigated. The level of cytolytic activity is highly reduced in Δ strains. Together, the results indicate that the pathogenicity of strain 407 and strain ATCC 14579 is controlled by PlcR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2825
2000-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462825a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2825&mimeType=html&fmt=ahah

References

  1. Agaisse H., Gominet M., Økstad O. A., Kolstø A. B., Lereclus D. 1999; PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32:1043–1053 [CrossRef]
    [Google Scholar]
  2. Agata N., Ohta M., Mori M., Isobe M. 1995; A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol Lett 129:17–20
    [Google Scholar]
  3. Beecher D. J., Pulido J. S., Barney N. P., Wong A. C. 1995a; Extracellular virulence factors in Bacillus cereus endophthalmitis: methods and implication of involvement of hemolysin BL. Infect Immun 63:632–639
    [Google Scholar]
  4. Beecher D. J., Schoeni J. L., Wong A. C. 1995b; Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect Immun 63:4423–4428
    [Google Scholar]
  5. Brehélin M., Zachary D. 1986; Insect haemocytes: a new classification to rule out the controversy. In Immunity in Invertebrates pp. 36–48Edited by Brehélin M. Berlin & Heidelberg: Springer;
    [Google Scholar]
  6. Callegan M. C., Jett B. D., Hancock L. E., Gilmore M. S. 1999; Role of hemolysin BL in the pathogenesis of extraintestinal Bacillus cereus infection assessed in an endophthalmitis model. Infect Immun 67:3357–3366
    [Google Scholar]
  7. Carlson C. R., Kolstø A.-B. 1993; A complete physical map of a Bacillus thuringiensis chromosome. J Bacteriol 175:1053–1060
    [Google Scholar]
  8. Drobniewski F. A. 1993; Bacillus cereus and related species. Clin Microbiol Rev 6:324–338
    [Google Scholar]
  9. Dubois N. R., Dean D. H. 1995; Synergism between Cry1A insecticidal crystal proteins and spores of Bacillus thuringiensis, other bacterial spores and vegetative cells against Lymantria dispar (Lepidoptera: Lymantriidae) larvae. Environ Entomol 24:1741–1747 [CrossRef]
    [Google Scholar]
  10. Finlay B. B. 1999; Bacterial disease in diverse hosts. Cell 96:315–318 [CrossRef]
    [Google Scholar]
  11. Gibson T. J. 1984 Studies on the Epstein–Barr virus genome PhD thesis University of Cambridge;
    [Google Scholar]
  12. Gilmore M. S., Cruz-Rodz A. M., Leimeister-Wächter M., Kreft J., Goebel W. 1989; A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. J Bacteriol 171:744–753
    [Google Scholar]
  13. Granum P. E., Lund T. 1997; Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157:223–228 [CrossRef]
    [Google Scholar]
  14. Granum P. E., O’Sullivan K., Lund T. 1999; The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol Lett 177:225–229 [CrossRef]
    [Google Scholar]
  15. Heimpel A. M. 1955; Investigations of the mode of action of strains of Bacillus cereus Fr. and Fr. pathogenic for the larch sawfly, Pristiphora erichsonii (Htg). Can J Zool 33:311–326 [CrossRef]
    [Google Scholar]
  16. Helgason E., Økstad O. A., Caugant D. A., Johansen H. A., Fouet A., Mock M., Hegna I., Kolstø A. B. 2000; Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630 [CrossRef]
    [Google Scholar]
  17. Hernandez E., Ramisse F., Ducoureau J. P., Cruel T., Cavallo J. D. 1998; Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J Clin Microbiol 36:2138–2139
    [Google Scholar]
  18. Hernandez E., Ramisse F., Cruel T., le Vagueresse R., Cavallo J. D. 1999; Bacillus thuringiensis serotype H34 isolated from human and insecticidal strains serotypes 3a3b and H14 can lead to death of immunocompetent mice after pulmonary infection. FEMS Immunol Med Microbiol 24:43–47 [CrossRef]
    [Google Scholar]
  19. Jackson S. G., Goodbrand R. B., Ahmed R., Kasatiya S. 1995; Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett Appl Microbiol 21:103–105 [CrossRef]
    [Google Scholar]
  20. Jander G., Rahme L. G., Ausubel F. M. 2000; Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182:3843–3845 [CrossRef]
    [Google Scholar]
  21. Johnson D. E., McGaughey W. H. 1996; Contribution of Bacillus thuringiensis spores to toxicity of purified Cry proteins towards Indianmeal moth larvae. Curr Microbiol 33:54–59 [CrossRef]
    [Google Scholar]
  22. Krieg A. 1971; Is the potential pathogenicity of bacilli for insects related to production of α-exotoxin. J Invertebr Pathol 18:425–426 [CrossRef]
    [Google Scholar]
  23. Kuppe A., Evans L. M., McMillen D. A., Griffith O. H. 1989; Phosphatidylinositol-specific phospholipase C of Bacillus cereus: cloning, sequencing, and relationship to other phospholipases. J Bacteriol 171:6077–6083
    [Google Scholar]
  24. Lecadet M. M., Blondel M. O., Ribier J. 1980; Generalized transduction in Bacillus thuringiensis var. berliner 1715, using bacteriophage CP54 Ber. J Gen Microbiol 121:203–212
    [Google Scholar]
  25. Lechner M., Kupke T., Stefanovic S., Götz F. 1989; Molecular characterization and sequence of phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis. Mol Micobiol 3:621–626 [CrossRef]
    [Google Scholar]
  26. Lereclus D., Arantes O., Chaufaux J., Lecadet M.-M. 1989; Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol Lett 60:211–217
    [Google Scholar]
  27. Lereclus D., Agaisse H., Gominet M., Chaufaux J. 1995; Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spo0A mutant. Bio/Technology 13:67–71 [CrossRef]
    [Google Scholar]
  28. Lereclus D., Agaisse H., Gominet M., Salamitou S., Sanchis V. 1996; Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J Bacteriol 178:2749–2756
    [Google Scholar]
  29. Li R. S., Jarrett P., Burges H. D. 1987; Importance of spores, crystals, and δ-endotoxins in the pathogenicity of different varieties of Bacillus thuringiensis in Galleria mellonella and Pieris brassicae. J Invertebr Pathol 50:277–284 [CrossRef]
    [Google Scholar]
  30. Lindbäck T., Økstad O. A., Rishovd A. L., Kolstø A. B. 1999; Insertional inactivation of hblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes. Microbiology 145:3139–3146
    [Google Scholar]
  31. Lund T., Granum P. E. 1997; Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology 143:3329–3336 [CrossRef]
    [Google Scholar]
  32. Miller J. M., Hair J. G., Hebert M., Hebert L., Roberts F. J. Jr, Weyant R. S. 1997; Fulminating bacteremia and pneumonia due to Bacillus cereus. J Clin Microbiol 35:504–507
    [Google Scholar]
  33. Økstad O. A., Gominet M., Purnelle B., Rose M., Lereclus D., Kolstø A.-B. 1999; Sequence analysis of three Bacillus cereus loci under PlcR virulence gene regulator control. Microbiology 145:3129–3138
    [Google Scholar]
  34. Rahme L. G., Tan M. W., Le L., Wong S. M., Tompkins R. G., Calderwood S. B., Ausubel F. M. 1997; Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci USA 94:13245–13250 [CrossRef]
    [Google Scholar]
  35. Raymond M., Prato G., Ratsira D. 1993 probit analysis of mortality assays displaying quantal response Praxème SARL; St Georges d’Orques, France:
    [Google Scholar]
  36. Ribeiro C., Duvic B., Oliveira P., Givaudan A., Pahla F., Simoes N., Brehélin M. 1999; Insect immunity: effects of factors produced by a nematobacterial complex on immunocompetent cells. J Insect Physiol 45:677–685 [CrossRef]
    [Google Scholar]
  37. Sanchis V., Agaisse H., Chaufaux J., Lereclus D. 1996; Construction of new insecticidal Bacillus thuringiensis recombinant strains by using the sporulation non-dependent expression system of cryIIIA and a site specific recombination vector. J Biotechnol 48:81–96 [CrossRef]
    [Google Scholar]
  38. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. R., Dean D. H. 1998; Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806
    [Google Scholar]
  39. Stephens J. M. 1952; Disease in codling moth larvae produced by several strains of Bacillus cereus. Can J Zool 30:30–40 [CrossRef]
    [Google Scholar]
  40. Tan M. W., Rahme L. G., Sternberg J. A., Tompkins R. G., Ausubel F. M. 1999; Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 96:2408–2413 [CrossRef]
    [Google Scholar]
  41. Trieu-Cuot P., Courvalin P. 1983; Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5′-aminoglycoside phosphotransferase type III. Gene 23:331–341 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2825
Loading
/content/journal/micro/10.1099/00221287-146-11-2825
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error