1887

Abstract

Three enzymes carrying esterase domains have been identified in the rumen cellulolytic anaerobe 17. The newly characterized CesA gene product (768 amino acids) includes an N-terminal acetylesterase domain and an unidentified C-terminal domain, while the previously characterized XynB enzyme (781 amino acids) includes an internal acetylesterase domain in addition to its N-terminal xylanase catalytic domain. A third gene, , is predicted to encode a multidomain enzyme of 792 amino acids including a family 11 xylanase domain and a C-terminal esterase domain. The esterase domains from CesA and XynB share significant sequence identity (44%) and belong to carbohydrate esterase family 3; both domains are shown here to be capable of deacetylating acetylated xylans, but no evidence was found for ferulic acid esterase activity. The esterase domain of XynE, however, shares 42% amino acid identity with a family 1 phenolic acid esterase domain identified from XynZ. XynB, XynE and CesA all contain dockerin-like regions in addition to their catalytic domains, suggesting that these enzymes form part of a cellulosome-like multienzyme complex. The dockerin sequences of CesA and XynE differ significantly from those previously described in polysaccharidases, including XynB, suggesting that they might represent distinct dockerin specificities.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-6-1391
2000-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/6/1461391a.html?itemId=/content/journal/micro/10.1099/00221287-146-6-1391&mimeType=html&fmt=ahah

References

  1. Akin D. E., Borneman W. S., Rigsby L. L., Martin S. A. 1993; p-Coumaroyl and feruloyl arabinoxylans from plant cell walls as substrates for ruminal bacteria. Appl Environ Microbiol 59:644–647
    [Google Scholar]
  2. Bartolomé B., Faulds C. B., Kroon P. A., Waldron K., Gilbert H. J., Hazlewood G. P., Williamson G. 1997; An Aspergillus niger esterase (FAE-III) and a recombinant Pseudomonas fluorescens subsp. cellulosa esterase (XYLD) release 5,5′-ferulic dehydroodimer (‘diferulic acid’) from barley and wheat cell walls. Appl Environ Microbiol 63:208–212
    [Google Scholar]
  3. Bayer E. A., Morag E., Lamed R., Yaron S., Shoham Y. 1998a; Cellulosome structure: four-pronged attack using biochemistry, molecular biology, crystallography and bioinformatics. In Carbohydrases from Trichoderma reesei and Other Microorganisms pp. 39–65Edited by Claeyssens M., Nerinckx W., Piens K. Cambridge: Royal Society of Chemistry;
    [Google Scholar]
  4. Bayer E. A., Shimon L. J. W., Shoham Y., Lamed R. 1998b; Cellulosomes – structure and ultrastructure. J Struct Biol 124:221–234 [CrossRef]
    [Google Scholar]
  5. Biely P., MacKenzie C. R., Puls J., Schneider H. 1986; Cooperativity of esterases and xylanases in enzymatic degradation of acetylxylan. Bio/Technology 4:731–733 [CrossRef]
    [Google Scholar]
  6. Blum D. L., Kataeva I., Li X.-L., Ljungdahl L. G. 1998; Phenolic acid esterase activity of Clostridium thermocellum cellulosome is attributed to previously unknown domains of XynY and XynZ. In Genetics, Biochemistry and Ecology of Cellulose Degradation (MIE Bioforum 98), pp. 478Edited by Ohmiya K., Hayashi K., Sakka K., Kobayashi Y., Karita S., Kimura T. Tokyo: UNI Publishers;
    [Google Scholar]
  7. Borneman W. S., Ljungdahl L. G., Hartley R. D., Akin D. E. 1991; Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol 57:2337–2344
    [Google Scholar]
  8. Borneman W. S., Ljungdahl L. G., Hartley R. D., Akin D. E. 1992; Purification and partial characterisation of two feruloyl esterases from the anaerobic fungus Neocallimastix strain MC2. Appl Environ Microbiol 58:3762–3766
    [Google Scholar]
  9. Christov L. P., Prior B. A. 1993; Esterases of xylan degrading microorganisms: production, properties and significance. Enzyme Microb Technol 15:460–475 [CrossRef]
    [Google Scholar]
  10. Cygler M., Schrag J. D., Sussman J. L., Harel M., Silman I., Gentry M. K., Doctor B. P. 1993; Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci 2:366–382
    [Google Scholar]
  11. Dalrymple B. P., Swadling Y., Cybinski D. H., Xue G.-P. 1996; Cloning of a gene encoding cinnamoyl ester hydrolase from the ruminal bacterium Butyrivibrio fibrisolvens E14 by a novel method. FEMS Microbiol Lett 143:115–120 [CrossRef]
    [Google Scholar]
  12. Dalrymple B. P., Cybinski D. H., Layton I., McSweeney C. S., Xue G.-P., Swadling Y. J., Lowry J. B. 1997; Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology 143:2605–2614 [CrossRef]
    [Google Scholar]
  13. Ding S.-Y., Bayer E. A., Shoham Y., Lamed E., McCrae S. I., Kirby J., Aurilia V., Flint H. J. 1999; Preliminary evidence of high molecular weight scaffoldin-like proteins from Ruminococcus flavefaciens. 3rd Carbohydrate Bioengineering MeetingNewcastle, UK abstract 5.12
    [Google Scholar]
  14. Flint H. J., Martin J., McPherson G. A. 1993; A bifunctional enzyme, with separate xylanase and β(1,3–1,4)glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J Bacteriol 175:2943–2951
    [Google Scholar]
  15. Gerngross V. T., Demain A. L. 1993; Sequencing of a Clostridium thermocellum gene cipA encoding the cellulosomal SL protein reveals an unusual degree of internal homology. Mol Microbiol 8:325–334 [CrossRef]
    [Google Scholar]
  16. Giraud I., Besle J. M., Fonty G. 1997; Hydrolysis and degradation of esterified phenolic acids from the maize cell wall by rumen microbial species. Reprod Nutr Dev Suppl 52:53
    [Google Scholar]
  17. Grépinet O., Chebrou M.-C., Béguin P. 1988; Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum. J Bacteriol 170:4582–4588
    [Google Scholar]
  18. Hespell R. B., O’Bryan-Shah P. J. 1988; Esterase activities in Butyrivibrio fibrisolvens. Appl Environ Microbiol 54:1917–1927
    [Google Scholar]
  19. Iiyama K., Lam T. P. T., Stone B. A. 1994; Covalent cross-links in the cell wall. Plant Physiol 104:315–320
    [Google Scholar]
  20. Johnson K. G., Fontana J. D., MacKenzie C. R. 1988; Measurement of acetyl xylan esterase in Streptomyces. Methods Enzymol 160:552–560
    [Google Scholar]
  21. Kirby J. 1996 Multiplicity and organisation of plant cell wall degrading enzymes in Ruminococcus flavefaciens PhD thesis University of Aberdeen;
    [Google Scholar]
  22. Kirby J., Martin J. C., Daniel A. S., Flint H. J. 1997; Dockerin-like sequences from the rumen cellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol Lett 149:213–219 [CrossRef]
    [Google Scholar]
  23. Kirby J., Aurilia V., McCrae S. I., Martin J. C., Flint H. J. 1998; Plant cell wall degrading enzyme complexes from the cellulolytic rumen bacterium Ruminococcus flavefaciens. Biochem Soc Trans 26:S169
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  25. Laurie J. I., Clarke J. H., Ciruela A., Faulds C. B., Williamson G., Gilbert H. J., Rixon J. E., Millward-Sadler J., Hazlewood G. P. 1997; The nodB domain of a multidomain xylanase from Cellulomonas fimi deacetylates acetylxylan. FEMS Microbiol Lett 148:261–264 [CrossRef]
    [Google Scholar]
  26. Lever M. 1977; Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Anal Biochem 81:21–27 [CrossRef]
    [Google Scholar]
  27. McDermid K. P., MacKenzie C. R., Forsberg C. W. 1990; Esterase activities of Fibrobacter succinogenes S85. Appl Environ Microbiol 56:127–132
    [Google Scholar]
  28. Pages S., Belaich A., Belaich J.-P., Morag E., Lamed R., Shoham Y., Bayer E. A. 1997; Species specificity of the cohesin–dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins Struct Funct Genet 29:517–527 [CrossRef]
    [Google Scholar]
  29. Rombouts F. M., Thibault J. F. 1986; Sugar beet pectins: chemical structure and gelation through oxidative coupling. Chemistry and function of pectins. ACS (Am Chem Soc) Symp Ser 310:49–60
    [Google Scholar]
  30. Salamitou S., Raynaud O., Lemaire M., Coughton M., Béguin P., Aubert J. P. 1994; Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome integrating protein CipA. J Bacteriol 176:2822–2827
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Schimming S., Schwarz W. H., Staudenbauer W. L. 1992; Structure of the Clostridium thermocellum gene licB and the encoded β-1,3–1,4-glucanase. Eur J Biochem 204:13–19 [CrossRef]
    [Google Scholar]
  33. Searle-van Leeuwen H. J. F., van den Brock H., Schols H. A., Beldman G., Voragen A. G. J. 1992; Rhamnogalacturonan acetylesterase: a novel enzyme from Aspergillus aculeatus, specific for the deacetylation of hairy (ramified) regimes of pectins. Appl Microbiol Biotechnol 38:347–349 [CrossRef]
    [Google Scholar]
  34. Shareck F., Biely P., Morosoli R , Kluepfel D. 1995; Analysis of DNA flanking the xynB locus of Streptomyces lividans reveals genes encoding acetyl xylan esterase and the RNA component of RnaseP. Gene 153:105–109 [CrossRef]
    [Google Scholar]
  35. Shevchik V. E., Hugouvieux-Cotte-Pattat N. 1997; Identification of a bacterial pectin acetylesterase in Erwinia chrysanthemi 3937. Mol Microbiol 24:1285–1301 [CrossRef]
    [Google Scholar]
  36. Upton C., Buckley J. T. 1995; A new family of lipolytic enzymes?. Trends Biochem Sci 20:178–179 [CrossRef]
    [Google Scholar]
  37. Williamson G., Kroon P. A., Faulds C. R. 1998; Hairy plant polysaccharides: a close shave with microbial esterases. Microbiology 144:2011–2023 [CrossRef]
    [Google Scholar]
  38. Wood T. M., McCrae S. I. 1986; The effect of acetyl groups on the hydrolysis of ryegrass cell walls by xylanase and cellulase from Trichoderma koningii. Phytochemistry 25:1053–1055 [CrossRef]
    [Google Scholar]
  39. Zhang J.-X. 1992 Genetic determination of xylanase in the rumen bacterium Ruminococcus flavefaciens PhD thesis University of Aberdeen;
    [Google Scholar]
  40. Zhang J.-X., Martin J., Flint H. J. 1994; Identification of non-catalytic conserved regions in xylanases encoded by the xynB and xynD genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Mol Gen Genet 245:260–264
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-6-1391
Loading
/content/journal/micro/10.1099/00221287-146-6-1391
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error