1887

Abstract

FomA is a major non-specific porin of with no sequence similarity to other known porins. According to the topology model, the protein consists of 16 transmembrane β-strands, connected by eight surface-exposed loops and seven periplasmic turns. In this study, the insertion mutagenesis approach was applied to probe the topology model. A Semliki Forest Virus (SFV) epitope was successfully inserted at 11 different sites of the FomA protein and a 6-aa insertion was successfully inserted at two different sites. Correct folding of the mutant proteins and proper incorporation into the outer membrane were assessed by heat modifiability and by an porin activity assay. Immunofluorescence microscopy analysis of intact cells, using mAbs directed against the inserted SFV epitope, revealed that three of the eight putative extracellular loops are indeed surface-exposed. Trypsin accessibility experiments confirmed the cell surface exposure of two additional loops. The results support the proposed topology model, showing that FomA possesses the general β-barrel topology of the non-specific porins, with the interesting exception that the third loop does not seem to fulfil the role of a constriction loop.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-6-1437
2000-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/6/1461437a.html?itemId=/content/journal/micro/10.1099/00221287-146-6-1437&mimeType=html&fmt=ahah

References

  1. Agterberg M., Adriaanse H., Tommassen J. 1987; Use of outer membrane protein PhoE as a carrier for the transport of a foreign antigenic determinant to the cell surface of Escherichia coli K-12. Gene 59:145–150 [CrossRef]
    [Google Scholar]
  2. Bakken V., Aaro S., Hofstad T., Vasstrand E. N. 1989a; Outer membrane proteins as major antigens of Fusobacterium nucleatum. FEMS Microbiol Immunol 1:473–483
    [Google Scholar]
  3. Bakken V., Aaro S., Jensen H. B. 1989b; Purification and partial characterization of a major outer-membrane protein of Fusobacterium nucleatum. J Gen Microbiol 135:3253–3262
    [Google Scholar]
  4. Bolstad A. I., Tommassen J., Jensen H. B. 1994; Sequence variability of the 40-kDa outer membrane proteins of Fusobacterium nucleatum strains and a model for the topology of the proteins. Mol Gen Genet 244:104–110 [CrossRef]
    [Google Scholar]
  5. Bolstad A. I., Hogh B. T., Jensen H. B. 1995; Molecular characterization of a 40-kDa outer membrane protein, FomA, of Fusobacterium periodonticum and comparison with Fusobacterium nucleatum. Oral Microbiol Immunol 10:257–264 [CrossRef]
    [Google Scholar]
  6. Bolstad A. I., Jensen H. B., Bakken V. 1996; Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. Clin Microbiol Rev 9:55–71
    [Google Scholar]
  7. Charbit A., Boulain J. C., Ryter A., Hofnung M. 1986; Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. EMBO J 5:3029–3037
    [Google Scholar]
  8. Cowan S. W. 1993; Bacterial porins: lessons from three high-resolution structures. Curr Opin Struct Biol 3:501–507 [CrossRef]
    [Google Scholar]
  9. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. 1992; Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733 [CrossRef]
    [Google Scholar]
  10. Dekker N., Merck K., Tommassen J., Verheij H. M. 1995; In vitro folding of Escherichia coli outer-membrane phospholipase A. Eur J Biochem 232:214–219 [CrossRef]
    [Google Scholar]
  11. Diederichs K., Freigang J., Umhau S., Zeth K., Breed J. 1998; Prediction by a neural network of outer membrane β-strand protein topology. Protein Sci 7:2413–2420 [CrossRef]
    [Google Scholar]
  12. Fernandez I. M., Harmsen M., Benaissa-Trouw B. J., Stuij I., Puyk W., Meloen R. H., Snippe H., Kraaijeveld C. A. 1998; Epitope polarity and adjuvants influence the fine specificity of the humoral response against Semliki Forest virus specific peptide vaccines. Vaccine 16:1531–1536 [CrossRef]
    [Google Scholar]
  13. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  14. Heller K. B. 1978; Apparent molecular weights of a heat-modifiable protein from the outer membrane of Escherichia coli in gels with different acrylamide concentrations. J Bacteriol 134:1181–1183
    [Google Scholar]
  15. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  16. Jensen H. B., Skeidsvoll J., Fjellbirkeland A., Hogh B., Puntervoll P., Kleivdal H., Tommassen J. 1996; Cloning of the fomA gene, encoding the major outer membrane porin of Fusobacterium nucleatum ATCC10953. Microb Pathog 21:331–342 [CrossRef]
    [Google Scholar]
  17. Kaufman J., DiRienzo J. M. 1989; Isolation of a corncob (coaggregation) receptor polypeptide from Fusobacterium nucleatum. Infect Immun 57:331–337
    [Google Scholar]
  18. Kleivdal H., Benz R., Jensen H. B. 1995; The Fusobacterium nucleatum major outer-membrane protein (FomA) forms trimeric, water-filled channels in lipid bilayer membranes. Eur J Biochem 233:310–316 [CrossRef]
    [Google Scholar]
  19. Kleivdal H., Benz R., Tommassen J., Jensen H. B. 1999; Identification of positively charged residues of FomA porin of Fusobacterium nucleatum which are important for pore function. Eur J Biochem 260:818–824 [CrossRef]
    [Google Scholar]
  20. Kolenbrander P. E., London J. 1993; Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 175:3247–3252
    [Google Scholar]
  21. Levinthal C., Signer E. R., Fetherolf K. 1962; Reactivation and hybridization of reduced alkaline phosphatase. Proc Natl Acad Sci USA 48:1230–1237 [CrossRef]
    [Google Scholar]
  22. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. 1975; Electrophoretic resolution of the ‘major outer membrane protein’ of Escherichia coli K12 into four bands. FEBS Lett 58:254–258 [CrossRef]
    [Google Scholar]
  23. Merck K. B., de Cock H., Verheij H. M., Tommassen J. 1997; Topology of the outer membrane phospholipase A of Salmonella typhimurium. J Bacteriol 179:3443–3450
    [Google Scholar]
  24. Moeck G. S., Bazzaz B. S., Gras M. F., Ravi T. S., Ratcliffe M. J., Coulton J. W. 1994; Genetic insertion and exposure of a reporter epitope in the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol 176:4250–4259
    [Google Scholar]
  25. Montal M. 1996; Protein folds in channel structure. Curr Opin Struct Biol 6:499–510 [CrossRef]
    [Google Scholar]
  26. Nakae T. 1976; Identification of the outer membrane protein of E. coli that produces transmembrane channels in reconstituted vesicle membranes. Biochem Biophys Res Commun 71:877–884 [CrossRef]
    [Google Scholar]
  27. Newton S. M., Klebba P. E., Michel V., Hofnung M., Charbit A. 1996; Topology of the membrane protein LamB by epitope tagging and a comparison with the X-ray model. J Bacteriol 178:3447–3456
    [Google Scholar]
  28. Ohmori H. 1994; A new method for strand discrimination in sequence-directed mutagenesis. Nucleic Acids Res 22:884–885 [CrossRef]
    [Google Scholar]
  29. Snijders A., Benaissa Trouw B. J., Oosterlaken T. A.7 other authors 1991; Identification of linear epitopes on Semliki Forest virus E2 membrane protein and their effectiveness as a synthetic peptide vaccine. J Gen Virol 72:557–565 [CrossRef]
    [Google Scholar]
  30. Struyvé M., Visser J., Adriaanse H., Benz R., Tommassen J. 1993; Topology of PhoE porin: the ‘eyelet’ region. Mol Microbiol 7:131–140 [CrossRef]
    [Google Scholar]
  31. Sukhan A., Hancock R. E. 1995; Insertion mutagenesis of the Pseudomonas aeruginosa phosphate-specific porin OprP. J Bacteriol 177:4914–4920
    [Google Scholar]
  32. Taylor I. M., Harrison J. L., Timmis K. N., O’Connor C. D. 1990; The TraT lipoprotein as a vehicle for the transport of foreign antigenic determinants to the cell surface of Escherichia coli K12: structure-function relationships in the TraT protein. Mol Microbiol 4:1259–1268 [CrossRef]
    [Google Scholar]
  33. Tommassen J., Lugtenberg B. 1984; Amino terminus of outer membrane PhoE protein: localization by use of a bla-phoE hybrid gene. J Bacteriol 157:327–329
    [Google Scholar]
  34. Tommassen J., van Tol H., Lugtenberg B. 1983; The ultimate localization of an outer membrane protein of Escherichia coli K-12 is not determined by the signal sequence. EMBO J 2:1275–1279
    [Google Scholar]
  35. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354 [CrossRef]
    [Google Scholar]
  36. Van Gelder P., Saint N., Phale P., Eppens E. F., Prilipov A., van Boxtel R., Rosenbusch J. P., Tommassen J. 1997; Voltage sensing in the PhoE and OmpF outer membrane porins of Escherichia coli: role of charged residues. J Mol Biol 269:468–472 [CrossRef]
    [Google Scholar]
  37. Weiss M. S., Abele U., Weckesser J., Welte W., Schiltz E., Schulz G. E. 1991; Molecular architecture and electrostatic properties of a bacterial porin. Science 254:1627–1630 [CrossRef]
    [Google Scholar]
  38. Welte W., Nestel U., Wacker T., Diederichs K. 1995; Structure and function of the porin channel. Kidney Int 48:930–940 [CrossRef]
    [Google Scholar]
  39. Zimmermann W., Rosselet A. 1977; Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother 12:368–372 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-6-1437
Loading
/content/journal/micro/10.1099/00221287-146-6-1437
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error