1887

Abstract

Homologues of , encoding extremely hydrophobic proteins, were identified in the genomes of and . Allelic replacement mutagenesis demonstrated that the gene is not essential for growth in either organism, and the mutants showed no significant changes in growth rate or morphology. The mutant showed slightly reduced virulence in a mouse model of infection and an eightfold increase in bacitracin susceptibility. However, a mutant was highly attenuated in a mouse model of infection, and demonstrated an increase in susceptibility to bacitracin of up to 160000-fold. These observations are consistent with the previously proposed role of BacA protein as undecaprenol kinase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-7-1547
2000-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/7/1461547a.html?itemId=/content/journal/micro/10.1099/00221287-146-7-1547&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Anderson R. G., Hussey H., Baddiley J. 1972; The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane. Biochem J 127:11–25
    [Google Scholar]
  3. Apfel C. M., Takacs B., Fountoulakis M., Stieger M., Keck W. 1999; Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene. J Bacteriol 181:483–492
    [Google Scholar]
  4. Baddiley J. 1973; Lipid intermediates in the biosynthesis of bacterial cell-wall components. Biochem Soc Trans 1:1026–1028
    [Google Scholar]
  5. Butaye P., Devriese L. A., Haesebrouck F. 1998; Effects of different test conditions on MICs of food animal growth-promoting antibacterial agents for enterococci. J Clin Microbiol 36:1907–1911
    [Google Scholar]
  6. Cain B. D., Norton P. J., Eubanks W., Nick H. S., Allen C. M. 1993; Amplification of the bacA gene confers bacitracin resistance to Escherichia coli. J Bacteriol 175:3784–3789
    [Google Scholar]
  7. Chapman G. H. 1945; The significance of sodium chloride in studies of staphylococci. J Bacteriol 50:201–203
    [Google Scholar]
  8. Cole S. T., Brosch R., Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  9. Cornelissen F., Van den Bossche H. 1983; Synergism of the antimicrobial agents miconazole, bacitracin and polymyxin B. Chemotherapy 29:419–427 [CrossRef]
    [Google Scholar]
  10. Deckert G., Warren P. V., Gaasterland T.12 other authors 1998; The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358 [CrossRef]
    [Google Scholar]
  11. Drablos F., Nicholson D. G., Ronning M. 1999; EXAFS study of zinc coordination in bacitracin A. Biochim Biophys Acta 1431:433–442 [CrossRef]
    [Google Scholar]
  12. Fraser C. M., Casjens S., Huang W. M.35 other authors 1997; Genomic sequence of a Lyme disease spirochete, Borrelia burgdorferi. Nature 390:580–586 [CrossRef]
    [Google Scholar]
  13. Gold L., Pribnow D., Schneider T., Shinedling S., Singer S. B., Stormo G. 1981; Translation initiation in prokaryotes. Annu Rev Microbiol 25:365–403
    [Google Scholar]
  14. Goldman R., Strominger J. L. 1972; Purification and properties of C55-isoprenol pyrophosphate phosphatase from Micrococcus lysodeikticus. J Biol Chem 247:5116–5122
    [Google Scholar]
  15. Havarstein L. S., Coomaraswamy G., Morrison D. A. 1995; An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci USA 92:11140–11144 [CrossRef]
    [Google Scholar]
  16. Higashi Y., Siewert G., Strominger J. L. 1970a; Biosynthesis of the peptidoglycan of bacterial cell walls. J Biol Chem 245:3683–3690
    [Google Scholar]
  17. Higashi Y., Strominger J. L., Sweeley C. C. 1970b; Biosynthesis of the peptidoglycan of bacterial cell walls. XXI. Isolation of free C55-isoprenoid alcohol and of lipid intermediates in peptidoglycan synthesis from Staphylococcus aureus. J Biol Chem 245:3697–3702
    [Google Scholar]
  18. Horinouchi S., Weisblum B. 1982; Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J Bacteriol 150:804–814
    [Google Scholar]
  19. Kanof N. B. 1970; Bacitracin and tyrothricin. Med Clin N Am 54:1291–1293
    [Google Scholar]
  20. Khan S., Novick R. P. 1983; Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid 10:251–259 [CrossRef]
    [Google Scholar]
  21. Kreiswirth B. N., Lofdahl S., Belley M. J., O’Reilly M., Shlievert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–712 [CrossRef]
    [Google Scholar]
  22. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  23. Lacks S. 1966; Integration efficiency and genetic recombination in pneumococcal transformation. Genetics 53:207–235
    [Google Scholar]
  24. Marrie T. J. 1999; Pneumococcal pneumonia: epidemiology and clinical features. Semin Respir Infect 14:227–236
    [Google Scholar]
  25. Martin B., Alloing G., Mejean V., Claverys J. P. 1987; Constitutive expression of erythromycin resistance mediated by the ermAM determinant of plasmid pAMβ1 results from deletion of 5′ leader peptide sequences. Plasmid 18:250–253 [CrossRef]
    [Google Scholar]
  26. Martin B., Humbert O., Camara M.10 other authors 1992; A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res 20:3479–3483 [CrossRef]
    [Google Scholar]
  27. Moszer I., Glaser P., Danchin A. 1995; Subtilist: a relational database for the Bacillus subtilis genome. Microbiology 141:261–268 [CrossRef]
    [Google Scholar]
  28. Navarre W. W., Schneewind O. 1999; Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229
    [Google Scholar]
  29. Novick R. P. 1991; Genetic systems in Staphylococci. Methods Enzymol 204:587–637
    [Google Scholar]
  30. Paton J. C. 1996; The contribution of pneumolysin to the pathogenicity of Streptococcus pneumoniae. Trends Microbiol 4:103–106 [CrossRef]
    [Google Scholar]
  31. Reusch V. M. Jr 1984; Lipopolymers, isoprenoids, and the assembly of the gram-positive cell wall. Crit Rev Microbiol 11:129–155 [CrossRef]
    [Google Scholar]
  32. Reusch V. M. Jr, Panos A. 1976; Defective synthesis of lipid intermediates for peptidoglycan formation in a stabilized L-form of Streptococcus pyogenes. J Bacteriol 126:300–311
    [Google Scholar]
  33. Sabelnikov A. G., Greenberg B., Lacks S. A. 1995; An extended −10 promoter alone directs transcription of the DpnII operon of Streptococcus pneumoniae. J Mol Biol 250:144–155 [CrossRef]
    [Google Scholar]
  34. Sandermann H. Jr, Strominger J. L. 1971; C55-isoprenoid alcohol phosphokinase: an extremely hydrophobic protein from the bacterial membrane. Proc Natl Acad Sci USA 68:2441–2443 [CrossRef]
    [Google Scholar]
  35. Sandermann H. Jr, Strominger J. L. 1972; Purification and properties of C55-isoprenoid alcohol phosphokinase from Staphylococcus aureus. J Biol Chem 247:5123–5131
    [Google Scholar]
  36. Shimizu N., Koyama T., Ogura K. 1998; Molecular cloning, expression, and purification of undecaprenyl diphosphate synthase: no sequence similarity between E- and Z-prenyl diphosphate synthases. J Biol Chem 273:19476–19481 [CrossRef]
    [Google Scholar]
  37. Stone K. J., Strominger J. L. 1971; Mechanism of action of bacitracin: complexation with metal ion and C55-isoprenyl pyrophosphate. Proc Natl Acad Sci USA 68:3223–3227 [CrossRef]
    [Google Scholar]
  38. Stone K. J., Strominger J. L. 1972; Inhibition of sterol biosynthesis by bacitracin. Proc Natl Acad Sci USA 69:1287–1289 [CrossRef]
    [Google Scholar]
  39. Storm D. R., Strominger J. L. 1973; Complex formation between bacitracin peptides and isoprenyl pyrophosphates. J Biol Chem 248:3940–3945
    [Google Scholar]
  40. Thorne K. J. I. 1973; Identification of prenol intermediates of wall biosynthesis in growing cells of Lactobacillus plantarum. J Bacteriol 116:235–244
    [Google Scholar]
  41. Toscano W. A., Storm D. R. 1982; Bacitracin. Pharmacol Ther 16:199–210 [CrossRef]
    [Google Scholar]
  42. Umbreit J. N., Stone K. J., Strominger J. L. 1972; Isolation of polyisoprenyl alcohols from Streptococcus faecalis. J Bacteriol 112:1302–1305
    [Google Scholar]
  43. Vijaranakul U., Nadakavukaren M. J., Bayles D. O., Wilkinson B. J., Jayaswal R. K. 1997; Characterization of an NaCl-sensitive Staphylococcus aureus mutant and rescue of the NaCl-sensitive phenotype by glycine betaine but not by other compatible solutes. Appl Environ Microbiol 63:1889–1897
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-7-1547
Loading
/content/journal/micro/10.1099/00221287-146-7-1547
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error