1887

Abstract

ArbZ from subsp. was previously shown to enable utilization of the β-glucoside arbutin by . The gene was cloned and expressed in the industrially used β-glucoside-negative strain 3036(62). The transformants were able to ferment not only arbutin, but also cellobiose, salicin and methyl-β-glucoside (MβGlc). Cleavage of β-glucosides by the transformants depended on the integrity of the cytoplasmic membrane, whereas in cell-free extracts only C-phosphorylated substrates were hydrolysed. This suggested that ArbZ is a phospho-β-glycosidase. ArbZ activity in transformants of was subject to substrate induction mediated by the β-glucosides arbutin, salicin and MβGlc, whereas cellobiose or the β-galactoside lactose had no inducing effect. Northern blot analysis proved that induction by MβGlc was due to enhanced transcription of . Catabolite repression of induction was observed with glucose, mannose, fructose and galactose. The induction kinetics observed in the presence of these sugars indicated that at least two different mechanisms are operative in catabolite repression of in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1941
2000-08-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461941a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1941&mimeType=html&fmt=ahah

References

  1. Anderson D. G., McKay L. L. 1983; Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46:549–552
    [Google Scholar]
  2. Aymerich S., Steinmetz M. 1992; Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Proc Natl Acad Sci U S A 89:10410–10414 [CrossRef]
    [Google Scholar]
  3. Bhowmik T., Steele J. L. 1993; Development of an electroporation procedure for gene disruption in Lactobacillus helveticus CNRZ32. J Gen Microbiol 139:1433–1439 [CrossRef]
    [Google Scholar]
  4. David S., Stevens H., van Riel M., Simons G., deVos W. M. 1992; Leuconostoc lactis β-galactosidase is encoded by two overlapping genes. J Bacteriol 174:4475–4481
    [Google Scholar]
  5. De Man J. C., Rogosa M., Sharpe M. E. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135 [CrossRef]
    [Google Scholar]
  6. deVos W. M. 1996; Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie Leeuwenhoek 70:223–242 [CrossRef]
    [Google Scholar]
  7. deVos W. M., Boerrigter I., van Roojen R. J., Reiche B., Hengstenberg W. 1990; Characterization of the lactose specific enzymes of the phosphotransferase system in Lactococcus lactis. J Biol Chem 265:22554–22560
    [Google Scholar]
  8. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [CrossRef]
    [Google Scholar]
  9. Egeter O., Brückner R. 1996; Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus. Mol Microbiol 21:739–749 [CrossRef]
    [Google Scholar]
  10. González-Candelas L., Aristoy M. C., Polaina J., Flors A. 1989; Cloning and characterization of two genes from Bacillus polymyxa expressing β-glucosidase activity in Escherichia coli. Appl Environ Microbiol 55:3173–3177
    [Google Scholar]
  11. Gräbnitz F., Staudenbauer W. L. 1988; Characterization of two β-glucosidase genes from Clostridium thermocellum. Biotechnol Lett 10:73–77 [CrossRef]
    [Google Scholar]
  12. Hall B. G., Xu L. 1992; Nucleotide sequence, function, activation, and evolution of the cryptic asc operon of Escherichia coli K12. Mol Biol Evol 9:688–706
    [Google Scholar]
  13. Helaszek C. T., White B. A. 1991; Cellobiose uptake and metabolism by Ruminococcus flavefaciens. Appl Environ Microbiol 57:64–67
    [Google Scholar]
  14. Helfert C., Gotsche S., Dahl M. K. 1995; Cleavage of trehalose-phosphate in Bacillus subtilis is catalysed by a phospho-α-(1–1)-glucosidase encoded by the treA gene. Mol Microbiol 16:111–120 [CrossRef]
    [Google Scholar]
  15. Henrich B., Monnerjahn U., Plapp R. 1990; Peptidase D gene (pepD) of Escherichia coli K-12: nucleotide sequence, transcript mapping and comparison with other peptidase genes. J Bacteriol 172:4641–4651
    [Google Scholar]
  16. Henrissat B. 1991; A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316
    [Google Scholar]
  17. Hueck C. J., Hillen W., Saier M. H. 1994; Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol 145:503–518 [CrossRef]
    [Google Scholar]
  18. Kiewiet R., Bron S., de Jonge K., Venema G., Seegers J. F. 1993; Theta replication of the lactococcal plasmid pWVO2. Mol Microbiol 10:319–327 [CrossRef]
    [Google Scholar]
  19. Kok J., van der Vossen M. B. M., Venema G. 1984; Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 48:726–731
    [Google Scholar]
  20. Krüger S., Lindner C., Hecker M. 1996; Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. J Bacteriol 178:2637–2644
    [Google Scholar]
  21. Leenhouts K. J., Kok J., Venema G. 1990; Stability of integrated plasmids in the chromosome of Lactococcus lactis. Appl Environ Microbiol 56:2726–2735
    [Google Scholar]
  22. Marasco R., Muscariello L., Varcamonti M., De Felice M., Sacco M. 1998; Expression of the bglH gene of Lactobacillus plantarum is controlled by carbon catabolite repression. J Bacteriol 180:3400–3404
    [Google Scholar]
  23. Miller J. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Okamoto T., Morichi T. 1979; Distribution of β-galactosidase and β-phosphogalactosidase activity among lactic streptococci. Agric Biol Chem 43:2389–2390 [CrossRef]
    [Google Scholar]
  25. Parker L. L., Hall B. 1990; Mechanisms of activation of the cryptic cel operon of Escherichia coli. Genetics 124:473–482
    [Google Scholar]
  26. Premi L., Sandine W. E., Elliker P. R. 1972; Lactose-hydrolyzing enzymes of Lactobacillus species. Appl Microbiol 24:51–57
    [Google Scholar]
  27. Raleigh E. A., Murray N. E., Revel H., Blumenthal R. M., Westaway D., Reith A. D., Rigby P. W. J., Elhai J., Hanahan D. 1988; McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Res 16:1563–1575 [CrossRef]
    [Google Scholar]
  28. Reizer J. 1989; Regulation of sugar uptake and efflux in gram-positive bacteria. FEMS Microbiol Rev 63:149–156
    [Google Scholar]
  29. Rixon J. E., Hazlewood G. P., Gilbert H. J. 1990; Integration of an unstable plasmid into the chromosome of Lactobacillus plantarum. FEMS Microbiol Lett 71:105–110 [CrossRef]
    [Google Scholar]
  30. Saier M. H. Jr, Chauvaux S., Cook G. M., Deutscher J., Paulson I. T., Reizer J., Ye J. J. 1996; Catabolite repression and inducer control in gram-positive bacteria. Microbiology 142:217–230 [CrossRef]
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Schaefler S. 1967; Inducible system for the utilization of β-glucosides in Escherichia coli I. Active transport and utilization of β-glucosides. J Bacteriol 93:254–263
    [Google Scholar]
  33. Schnetz K., Rak B. 1988; Regulation of the bgl operon of Escherichia coli by transcriptional antitermination. EMBO J 7:3271–3277
    [Google Scholar]
  34. Schnetz K., Toloczyki C., Rak B. 1987; β-Glucoside (bgl) operon of Escherichia coli K12: nucleotide sequence, genetic organization and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol 169:2579–2590
    [Google Scholar]
  35. Simons G., Nijhuis M., deVos W. M. 1993; Integration and gene replacement in the Lactococcus lactis lac-operon: induction of a cryptic phospho-β-glucosidase in LacG-deficient strains. J Bacteriol 175:5168–5175
    [Google Scholar]
  36. Spector T. 1978; Refinement of the coomassie-blue method of protein quantitation. Anal Biochem 86:142–146 [CrossRef]
    [Google Scholar]
  37. Stülke J., Arnaud M., Rapoport G., Martin-Verstraete I. 1998; PRD – a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 28:865–874 [CrossRef]
    [Google Scholar]
  38. Tobisch S., Glaser P., Krüger S., Hecker M. 1997; Identification and characterization of a new β-glucoside utilization system in Bacillus subtilis. J Bacteriol 179:496–506
    [Google Scholar]
  39. Tyler B., Magasanik B. 1969; Molecular basis of transient repression of β-galactosidase in Escherichia coli. J Bacteriol 97:550–556
    [Google Scholar]
  40. Vaughan E. E., David S., deVos W. M. 1996; The lactose transporter in Leuconostoc lactis is a new member of the LacS subfamily of galactoside-pentose-hexuronide translocators. Appl Environ Microbiol 62:1574–1582
    [Google Scholar]
  41. Wagner E., Marcandier S., Egeter O., Deutscher J., Götz F., Brückner R. 1995; Glucose kinase-dependent catabolite repression in Staphylococcus xylosus. J Bacteriol 177:6144–6152
    [Google Scholar]
  42. Weber B. A., Klein J. R., Henrich B. 1998; The arbZ gene from Lactobacillus delbrueckii subsp. lactis confers to Escherichia coli the ability to utilize the β-glucoside arbutin. Gene 212:203–211 [CrossRef]
    [Google Scholar]
  43. Weickert M. J., Chambliss G. H. 1990; Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci USA 87:6238–6242 [CrossRef]
    [Google Scholar]
  44. Witt E., Frank R., Hengstenberg W. 1993; 6-Phospho-β-galactosidases of Gram-positive and 6-phospho-β-glucosidase B of Gram-negative bacteria: comparisons of structure and function by kinetic and immunological methods and mutagenesis of the lacG gene of Staphylococcus aureus. Protein Eng 6:912–920
    [Google Scholar]
  45. Woodward J., Wiseman A. 1982; Fungal and other β-d-glucosidases – their properties and applications. Enzyme Microb Technol 4:73–79 [CrossRef]
    [Google Scholar]
  46. Ye J. J., Saier M. H. Jr 1996; Regulation of sugar uptake via the phosphoenolpyruvate-dependent phosphotransferase system in Bacillus subtilis and Lactococcus lactis is mediated by ATP-dependent phosphorylation of seryl residue 46 in HPr. J Bacteriol 178:3557–3563
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-1941
Loading
/content/journal/micro/10.1099/00221287-146-8-1941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error