1887

Abstract

DSM 792 accumulates and phosphorylates mannitol via a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS). PEP-dependent mannitol phosphorylation by extracts of cells grown on mannitol required both soluble and membrane fractions. Neither the soluble nor the membrane fraction could be complemented by the opposite fraction prepared from glucose-grown cells, indicating that the mannitol-specific PTS consists of both a soluble (IIA) and a membrane-bound (IICB) component. The mannitol () operon of DSM 792 comprises four genes in the order . Sequence analysis of deduced protein products indicated that the and genes respectively encode the IICB and IIA components of the mannitol PTS, which is a member of the fructose-mannitol (Fru) family. The gene product is a mannitol-1-phosphate dehydrogenase, while encodes a putative transcriptional regulator. MtlR contains two PTS regulatory domains (PRDs), which have been found in a number of DNA-binding transcriptional regulators and in transcriptional antiterminators of the BglG family. Also, near the C-terminus is a well-conserved signature motif characteristic of members of the IIA/IIA/IIA PTS protein family. These regions are probably the sites of PTS-dependent phosphorylation to regulate the activity of the protein. A helix–turn–helix DNA-binding motif was not found in MtlR. Transcriptional analysis of the genes by Northern blotting indicated that the genes were transcribed as a polycistronic operon, expression of which was induced by mannitol and repressed by glucose. Primer extension experiments identified a transcriptional start point 42 bp upstream of the start codon. Two catabolite-responsive elements (CREs), one of which overlapped the putative −35 region of the promoter, were located within the 100 bp upstream of the start codon. These sequences may be involved in regulation of expression of the operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-1-75
2001-01-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/1/1470075a.html?itemId=/content/journal/micro/10.1099/00221287-147-1-75&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.[CrossRef] [Google Scholar]
  2. Bertram, J. & Dürre, P.(1989). Conjugal transfer and expression of streptococcal transposons in Clostridium acetobutylicum. Arch Microbiol 151, 551-557.[CrossRef] [Google Scholar]
  3. Birnboim, C. & Doly, J.(1979). Rapid alkaline extraction procedure for screening proteins, RNA, and DNA in polyacrylamide gels. Electrophoresis 8, 93-98. [Google Scholar]
  4. Boyd, D. A., Thevenot, T., Gumbmann, M., Honeyman, A. L. & Hamilton, I. R.(2000). Identification of the operon for the sorbitol (glucitol) phosphoenolpyruvate:sugar phosphotransferase system in Streptococcus mutans. Infect Immun 68, 925-930.[CrossRef] [Google Scholar]
  5. Brown, G. D. & Thomson, J. A.(1998). Isolation and characterisation of an aryl-β-d-glucoside uptake and utilisation system (abg) from the gram-positive ruminal Clostridium species C. longisporum. Mol Gen Genet 257, 213-218.[CrossRef] [Google Scholar]
  6. Chester, N. & Marshak, D. R.(1993). Dimethyl sulfoxide-mediated primer Tm reduction: a method for analyzing the role of renaturation temperature in the polymerase chain reaction. Anal Biochem 209, 284-290.[CrossRef] [Google Scholar]
  7. Davis, T., Yamada, M., Elgort, M. & Saier, M. H.Jr(1988). Nucleotide sequence of the mannitol (mtl) operon in Escherichia coli. Mol Microbiol 2, 405-412.[CrossRef] [Google Scholar]
  8. Davison, S. P., Santangelo, J. D., Reid, S. J. & Woods, D. R.(1995). A Clostridium acetobutylicum regulator gene (regA) affecting amylase production in Bacillus subtilis. Microbiology 141, 989-996.[CrossRef] [Google Scholar]
  9. Débarbouillé, M., Martin-Verstraete, I., Klier, A. & Rapoport, G.(1991). The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both σ54- and phosphotransferase system-dependent regulators. Proc Natl Acad Sci USA 88, 2212-2216.[CrossRef] [Google Scholar]
  10. Dodd, I. B. & Egan, J. B.(1990). Improved detection of helix-turn-helix DNA binding motifs in protein sequences. Nucleic Acids Res 18, 5019-5026.[CrossRef] [Google Scholar]
  11. Dürre, P.(1998). New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49, 639-648.[CrossRef] [Google Scholar]
  12. Dürre, P. & Bahl, H.(1996). Microbial production of acetone/butanol/isopropanol. In Biotechnology, 2nd edn, vol. 6, Products of Primary Metabolism , pp. 229-291. Edited by M. Roehr. Weinheim:VCH.
  13. Fischer, R., Pogge von Strandmann, R. & Hengstenberg, W.(1991). Mannitol specific phosphoenolpyruvate-dependent phosphotransferase system of Enterococcus faecalis: molecular cloning and nucleotide sequences of the enzyme IIIMtl gene and the mannitol-1-phosphate dehydrogenase gene, expression in Escherichia coli, and comparison of the gene products with similar enzymes. J Bacteriol 173, 3709-3715. [Google Scholar]
  14. Freier, S. M., Kierzek, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T. & Turner, D. H.(1986). Improved free-energy parameters for prediction of RNA duplex stability. Proc Natl Acad Sci USA 83, 9373-9377.[CrossRef] [Google Scholar]
  15. Gerischer, U. & Dürre, P.(1990). Cloning, sequencing, and molecular analysis of the acetoacetate decarboxylase gene region from Clostridium acetobutylicum. J Bacteriol 172, 6907-6918. [Google Scholar]
  16. Graves, M. C. & Rabinowitz, J. C.(1986). In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. J Biol Chem 261, 11409-11415. [Google Scholar]
  17. Henstra, S. A., Tolner, B., ten Hoeve Duurkens, R. H., Konings, W. N. & Robillard, G. T.(1996). Cloning, expression, and isolation of the mannitol transport protein from the thermophilic bacterium Bacillus stearothermophilus. J Bacteriol 178, 5586-5591. [Google Scholar]
  18. Henstra, S. A., Tuinhof, M., Duurkens, R. H. & Robillard, G. T.(1999). The Bacillus stearothermophilus mannitol regulator, MtlR, of the phosphotransferase system. A DNA-binding protein, regulated by HPr and IICBmtl-dependent phosphorylation. J Biol Chem 274, 4754-4763.[CrossRef] [Google Scholar]
  19. Honeyman, A. L. & Curtiss, R.III(2000). The mannitol-specific enzyme II (mtlA) gene and the mtlR gene of the PTS of Streptococcus mutans. Microbiology 146, 1565-1572. [Google Scholar]
  20. Hueck, C. J. & Hillen, W.(1995). Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria? Mol Microbiol 15, 395-401.[CrossRef] [Google Scholar]
  21. Johnson, J. L., Toth, J., Santiwatanakul, S. & Chen, J. S.(1997). Cultures of ‘‘Clostridium acetobutylicum’’ from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA–DNA reassociation. Int J Syst Bacteriol 47, 420-424.[CrossRef] [Google Scholar]
  22. Jones, D. T. & Keis, S.(1995). Origins and relationships of industrial solvent-producing clostridial strains. FEMS Microbiol Rev 17, 223-232.[CrossRef] [Google Scholar]
  23. Jones, D. T. & Woods, D. R.(1986). Acetone-butanol fermentation revisited. Microbiol Rev 50, 484-524. [Google Scholar]
  24. Keis, S., Bennett, C. F., Ward, V. K. & Jones, D. T.(1995). Taxonomy and phylogeny of industrial solvent-producing clostridia. Int J Syst Bacteriol 45, 693-705.[CrossRef] [Google Scholar]
  25. Lindner, C., Galinier, A., Hecker, M. & Deutscher, J.(1999). Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Mol Microbiol 31, 995-1006.[CrossRef] [Google Scholar]
  26. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208-218.[CrossRef] [Google Scholar]
  27. Martin-Verstraete, I., Charrier, V., Stülke, J., Galinier, A., Erni, B., Rapoport, G. & Deutscher, J.(1998). Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol 28, 293-303.[CrossRef] [Google Scholar]
  28. Merrick, M. J. & Coppard, J. R.(1989). Mutations in genes downstream of the rpoN gene (encoding σ54) of Klebsiella pneumoniae affect expression from σ54-dependent promoters. Mol Microbiol 3, 1765-1775.[CrossRef] [Google Scholar]
  29. Mitchell, W. J.(1996). Carbohydrate uptake and utilization by Clostridium beijerinckii NCIMB 8052. Anaerobe 2, 379-384.[CrossRef] [Google Scholar]
  30. Mitchell, W. J.(1998). Physiology of carbohydrate to solvent conversion by clostridia. Adv Appl Microbiol 39, 31-130. [Google Scholar]
  31. Mitchell, W. J. & Booth, I. R.(1984). Characterization of the Clostridium pasteurianum phosphotransferase system. J Gen Microbiol 130, 2193-2200. [Google Scholar]
  32. Mitchell, W. J., Shaw, J. E. & Andrews, L.(1991). Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052. Appl Environ Microbiol 57, 2534-2539. [Google Scholar]
  33. O’Brien, R. W. & Morris, J. G.(1971). Oxygen and the growth and metabolism of Clostridium acetobutylicum. J Gen Microbiol 68, 307-318.[CrossRef] [Google Scholar]
  34. Oelmüller, U., Krüger, N., Steinbüchel, A. & Friedrich, B.(1990). Isolation of prokaryotic RNA and detection of specific mRNA with biotinylated probes. J Microbiol Methods 11, 73-81.[CrossRef] [Google Scholar]
  35. Page, R. D. M.(1996).treeview: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12, 357-358. [Google Scholar]
  36. Pas, H. H. & Robillard, G. T.(1988).S-Phosphocysteine and phosphohistidine are intermediates in the phosphoenolpyruvate-dependent mannitol transport catalysed by Escherichia coli EIIMtl. Biochemistry 27, 5835-5839.[CrossRef] [Google Scholar]
  37. Platt, T.(1986). Transcription termination and the regulation of gene expression. Annu Rev Biochem 55, 339-372.[CrossRef] [Google Scholar]
  38. Postma, P. W., Lengeler, J. W. & Jacobson, G. R.(1993). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543-594. [Google Scholar]
  39. Powell, B. S., Court, D. L., Inada, T., Nakamura, Y., Michotey, V., Cui, X., Reizer, A., Saier, M. H.Jr & Reizer, J.(1995). Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. J Biol Chem 270, 4822-4839.[CrossRef] [Google Scholar]
  40. Reiche, B., Frank, R., Deutscher, J., Meyer, N. & Hengstenberg, W.(1988). Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the mannitol-specific enzyme IIImtl of Staphylococcus aureus and Staphylococcus carnosus and homology with the Enzyme IImtl of Escherichia coli. Biochemistry 27, 6512-6516.[CrossRef] [Google Scholar]
  41. Reid, S. J., Rafudeen, M. S. & Leat, N. G.(1999). The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon. Microbiology 145, 1461-1472.[CrossRef] [Google Scholar]
  42. Saier, M. H.Jr & Reizer, J.(1992). Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. J Bacteriol 174, 1433-1438. [Google Scholar]
  43. Saier, M. H.Jr & Reizer, J.(1994). The bacterial phosphotransferase system: new frontiers 30 years later. Mol Microbiol 13, 755-764.[CrossRef] [Google Scholar]
  44. Saier, M. H.Jr & Tseng, T.-T.(1999). Evolutionary origins of transmembrane transport systems. In Transport of Molecules across Microbial Membranes (Society for General Microbiology Symposium 58) , pp. 252-274. Edited by J. K. Broome-Smith, S. Baumberg, C. J. Stirling & F. B. Ward. Cambridge:Cambridge University Press.
  45. Saier, M. H.Jr, Chavaux, S., Cook, G. M., Deutscher, J., Paulsen, I. T., Reizer, J. & Ye, J.-J.(1996). Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142, 217-230.[CrossRef] [Google Scholar]
  46. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  47. Sanger, F. S., Nicklen, F. & Coulson, A. R.(1977). DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74, 5463-5467.[CrossRef] [Google Scholar]
  48. Stülke, J., Arnaud, M., Rapoport, G. & Martin-Verstraete, I.(1998). PRD – a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 28, 865-874.[CrossRef] [Google Scholar]
  49. Tangney, M. & Mitchell, W. J.(2000). Analysis of a catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum ATCC 824. J Mol Microbiol Biotechnol 2, 71-80. [Google Scholar]
  50. Tangney, M., Brehm, J. K., Minton, N. P. & Mitchell, W. J.(1998). A gene system for glucitol transport and metabolism in Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 64, 1612-1619. [Google Scholar]
  51. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.[CrossRef] [Google Scholar]
  52. Tobisch, S., Glaser, P., Krüger, S. & Hecker, M.(1997). Identification and characterization of a new β-glucoside utilization system in Bacillus subtilis. J Bacteriol 179, 496-506. [Google Scholar]
  53. Tobisch, S., Stülke, J. & Hecker, M.(1999). Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis. J Bacteriol 181, 4995-5003. [Google Scholar]
  54. Tortosa, P., Aymerich, S., Lindner, C., Saier, M. H.Jr, Reizer, J. & LeCoq, D.(1997). Multiple phosphorylation of SacY, a Bacillus subtilis transcriptional antiterminator negatively controlled by the phosphotransferase system. J Biol Chem 272, 17230-17237.[CrossRef] [Google Scholar]
  55. Vieira, J. & Messing, J.(1982). The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259-268.[CrossRef] [Google Scholar]
  56. Wierenga, R. K., Terpstra, P. & Hol, W. G. J.(1986). Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187, 101-107.[CrossRef] [Google Scholar]
  57. Yanisch-Perron, C., Vieira, J. & Messing, J.(1985). Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33, 103-119.[CrossRef] [Google Scholar]
  58. Young, M., Minton, N. P. & Staudenbauer, W. L.(1989). Recent advances in the genetics of the clostridia. FEMS Microbiol Rev 63, 301-326. [Google Scholar]
  59. Zamenhof, S.(1957). Preparation and assay of deoxyribonucleic acid from animal tissue. Methods Enzymol 3, 696-704. [Google Scholar]
  60. Zuker, M.(1989). Computer prediction of RNA structure. Methods Enzymol 180, 262-288. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-1-75
Loading
/content/journal/micro/10.1099/00221287-147-1-75
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error