1887

Abstract

In yeast the use of rhodamine 123 (Rh123) has been restricted to the evaluation of mitochondrial respiratory function including the discrimination between respiratory-competent and -deficient cells. This study describes the optimization and validation of a low-concentration Rh123 staining protocol for the flow-cytometric assessment of mitochondrial membrane potential (ΔΨm) changes in whole yeast cells. The optimized protocol was validated by the use of compounds that specifically affect mitochondrial energetics. Epifluorescence microscopy was used to monitor Rh123 distribution within the cell. Incubation of yeast cell suspensions with Rh123 (50 nM, 10 min) gave minimal non-specific binding and cytotoxicity of the dye. The ratio (R) between the green fluorescence and forward scatter (both measured as log values) was used to measure ΔΨm with only little dependence on cell ‘volume’ and mitochondrial concentration. Cells treated with mitochondrial membrane de- or hyper-polarizing agents displayed a decrease and an increase of R values respectively, indicating that changes of the Rh123 distribution in cells indicate variations in the ΔΨm. Live and dead cells also displayed significantly different R values. The method described here allows assessment of ΔΨm changes in whole yeast cells in response to a given drug. Moreover, the relationship between drug effects and disorders of mitochondrial energetics might be addressed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-12-3335
2001-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/12/1473335a.html?itemId=/content/journal/micro/10.1099/00221287-147-12-3335&mimeType=html&fmt=ahah

References

  1. Bernardi, P., Petronilli, V., Di Lisa, F. & Forte, M. (2001). A mitochondrial perspective on cell death. Trends Biochem Sci 26, 112-117.[CrossRef] [Google Scholar]
  2. van den Broeck, P. (1982).The energetics of sugar transport in yeast. PhD thesis, University of Leiden, The Netherlands.
  3. Chen, L. B. (1988). Mitochondrial membrane potential in living cells. Annu Rev Cell Dev Biol 4, 155-181.[CrossRef] [Google Scholar]
  4. Chen, L. B. (1989). Fluorescent labeling of mitochondria. Methods Cell Biol 29, 103-203. [Google Scholar]
  5. Chen, L. B., Summerhayes, I. C., Johnson, L. V., Walsh, M. L., Bernal, S. D. & Lampidis, T. J. (1981). Probing mitochondria in living cells with rhodamine 123. Cold Spring Harbor Symp Quant Biol 46, 141-155. [Google Scholar]
  6. Cossarizza, A., Baccarani-Contri, M., Kalashnikova, G. & Franceshi, C. (1993). A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197, 40-45.[CrossRef] [Google Scholar]
  7. Emaus, R. K., Grunwald, R. & Lemasters, J. (1986). Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850, 436-448.[CrossRef] [Google Scholar]
  8. Fernandes, L., Cõrte-Real, M., Loureiro, V., Loureiro-Dias, M. C. & Leão, C. (1997). Glucose respiration and fermentation in Zygosaccharomyces bailii and Saccharomyces cerevisiae express different sensitivity patterns to ethanol and acetic acid. Lett Appl Microbiol 25, 249-253.[CrossRef] [Google Scholar]
  9. Fortuna, M., Sousa, M. J., Cõrte-Real, M., Leão, C., Salvador, A. & Sansonetty, F. (2000). Cell cycle analysis of yeasts using Syber Green I. In Current Protocols in Cytometry, pp. 11.13.1–11.13.9. Edited by J. P. Robinson. New York: Wiley.
  10. Goldstein, S. D. & Korczac, L. B. (1981). Status of mitochondria in living fibroblasts during growth and senescence in vitro: use of the laser dye rhodamine 123. J Cell Biol 91, 392-398.[CrossRef] [Google Scholar]
  11. Grinius, L. L., Jasaitis, A. A., Kadziaukas, Y. P., Liberman, E. A., Skulachev, V. P., Topaly, V. P., Tsofina, L. M. & Vladimirova, M. A. (1970). Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim Biophys Acta 216, 1-12.[CrossRef] [Google Scholar]
  12. Haugland, R. P. (1996). Handbook of fluorescent probes. Eugene, OR: Molecular Probes.
  13. Howlett, N. G. & Avery, S. V. (1999). Flow cytometric investigation of heterogeneous copper-sensitivity in asynchronously grown Saccharomyces cerevisiae. FEMS Microbiol Lett 176, 379-386.[CrossRef] [Google Scholar]
  14. Johnson, L. V., Walsh, M. L. & Chen, L. B. (1980). Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci 2, 990-994. [Google Scholar]
  15. Johnson, L. V., Walsh, M. L., Bokus, B. J. & Chen, L. B. (1981). Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 83, 526-535. [Google Scholar]
  16. Juan, G., Cavazzoni, M., Sáez, G. T. & O’Connor, J. E. (1994). A fast kinetic method for assessing mitochondrial membrane potential in isolated hepatocytes with rhodamine 123 and flow cytometry. Cytometry 15, 335-342.[CrossRef] [Google Scholar]
  17. Kolaczkowski, M., van der Rest, M., Cybularz-Kolaczkowska, A., Soumillion, J. P., Konings, W. & Goffeau, A. (1996). Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p. J Biol Chem 271, 31543-31548.[CrossRef] [Google Scholar]
  18. Lagunas, R. (1986). Misconceptions about the energy metabolism of Saccharomyces cerevisiae. Yeast 2, 221-228.[CrossRef] [Google Scholar]
  19. Lloyd, D. (1999). Evaluating the mitochondrial (respiratory) function of yeast. Current Protocols in Cytometry. p. 11.10.4. Edited by J. P. Robinson. New York: Wiley.
  20. Lloyd, D., Moran, C. A., Suller, M. T. E., Dinsdale, M. G. & Hayes, H. J. (1996). Flow cytometric monitoring of rhodamine 123 and a cyanine dye uptake by yeast during cider fermentation. J Inst Brew 102, 251-259.[CrossRef] [Google Scholar]
  21. Ludovico, P., Sousa, M. J., Silva, M. T., Leão, C. & Cõrte-Real, M. (2001).Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147, 2409-2415. [Google Scholar]
  22. Macouillard-Poulletier de Gannes, F., Belaud-Rotureau, M. A., Voisin, P., Leducq, N., Belloc, F., Canioni, P. & Diolez, P. (1998). Flow cytometric analysis of mitochondrial activity in situ: application to acetylceramide-induced mitochondrial swelling and apoptosis. Cytometry 33, 333-339.[CrossRef] [Google Scholar]
  23. Nicholls, D. G. (1982).Bioenergetics: an Introduction to the Chemiosmotic Theory. London & New York: Academic Press.
  24. O’Connor, J. E., Vargas, J. L., Kimler, B. F., Hernandez-Yago, J. & Grisolia, S. (1988). Use of rhodamine 123 to investigate alterations in mitochondrial activity in isolated mouse liver mitochondria. Biochem Biophys Res Commun 151, 568-573.[CrossRef] [Google Scholar]
  25. Petit, P. X., O’Connor, J. E., Grunwald, D. & Brown, S. C. (1990). Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem 194, 389-397.[CrossRef] [Google Scholar]
  26. Petit, P. X., Glad, N., Marie, D., Kieffer, H. & Métézeau, P. (1996). Discrimination of respiratory dysfunction in yeast mutants by confocal microscopy, image, and flow cytometry. Cytometry 23, 28-38.[CrossRef] [Google Scholar]
  27. Pronk, J. T., Steensma, H. Y. & Dijken, J. P. V. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 1607-1633.[CrossRef] [Google Scholar]
  28. Prudẽncio, C., Sansonetty, F., Sousa, M. J., Cõrte-Real, M. & Leão, C. (2000). Rapid detection of efflux pumps and their relation with drug resistance in yeast cells. Cytometry 39, 26-35.[CrossRef] [Google Scholar]
  29. Ronot, X., Benel, L., Adolphe, M. & Mounolou, J. C. (1986). Mitochondrial analysis in living cells: the use of rhodamine 123 and flow cytometry. Biol Cell 57, 1-8.[CrossRef] [Google Scholar]
  30. Salvioli, S., Ardizzoni, A., Franceschi, C. & Cossarizza, A. (1997). JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411, 77-82.[CrossRef] [Google Scholar]
  31. Salvioli, S., Dobrucki, J., Moretti, L., Troiano, L., Fernandez, M., Pinti, M., Pedrazzi, J., Franceschi, C. & Cossarizza, A. (2000). Mitochondrial heterogeneity during staurosporine-induced apoptosis in HL60 cells: analysis at the single cell and single organelle level. Cytometry 40, 189-197.[CrossRef] [Google Scholar]
  32. Seligmann, B. E. & Gallin, J. I. (1986). Comparison of indirect probes of membrane potential utilized in studies of human neutrophils. J Cell Physiol 105, 105-115. [Google Scholar]
  33. Shapiro, H. M. (1994). Cell membrane potential analysis.Methods Cell Biol 41, 121-133. [Google Scholar]
  34. Skowronek, P., Krummeck, G., Haferkamp, O. & Rodel, G. (1990). Flow cytometry as a tool to discriminate respiratory-competent and respiratory-deficient yeast cells. Curr Genet 18, 265-267.[CrossRef] [Google Scholar]
  35. van Uden, N. (1967). Transport-limited fermentation and growth of Saccharomyces cerevisiae and its competitive inhibition. Arch Mikrobiol 58, 155-168.[CrossRef] [Google Scholar]
  36. Visser, W. (1995).Oxygen requirements of fermentative yeasts. PhD thesis, Technical University of Delft.
  37. Wium, H., Malfeito-Ferreira, M., Loureiro, V. & Aubyn, A. (1990). A rapid characterization of yeast contaminants associated with sparkling wine production. Industrie Bevande 19, 504-506. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-12-3335
Loading
/content/journal/micro/10.1099/00221287-147-12-3335
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error