1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-255
2001-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470255a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-255&mimeType=html&fmt=ahah

References

  1. Abastado J. P., Miller P. F., Jackson B. M., Hinnebusch A. G. 1991; Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol Cell Biol 11:486–496
    [Google Scholar]
  2. Al Karadaghi S., Aevarsson A., Garber M., Zheltonosova J., Liljas A. 1996; The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. Structure 4:555–565 [CrossRef]
    [Google Scholar]
  3. Baum M., Beier H. 1998; Wheat cytoplasmic arginine tRNA isoacceptor with a U*CG anticodon is an efficient UGA suppressor in vitro. Nucleic Acids Res 26:1390–1395 [CrossRef]
    [Google Scholar]
  4. Beier H., Barciszewska M., Krupp G., Mitnacht R., Gross H. J. 1984; UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAsTyr with suppressor activity from tobacco plants. EMBO J 3:351–356
    [Google Scholar]
  5. Berry M. J., Banu L., Chen Y. Y., Mandel S. J., Kieffer J. D., Harney J. W., Larsen P. R. 1991; Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 353:273–276 [CrossRef]
    [Google Scholar]
  6. Berry M. J., Banu L., Harney J. W., Larsen P. R. 1993; Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J 12:3315–3322
    [Google Scholar]
  7. Bertram G., Bell H. A., Ritchie D. W., Fullerton G., Stansfield I. 2000; Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. RNA 6:1236–1247 [CrossRef]
    [Google Scholar]
  8. Bjornsson A., Mottagui-Tabar S., Isaksson L. A. 1996; Structure of the C-terminal end of the nascent peptide influences translation termination. EMBO J 15:1696–1704
    [Google Scholar]
  9. Bock A., Forchhammer K., Heider J., Baron C. 1991; Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem Sci 16:463–467 [CrossRef]
    [Google Scholar]
  10. Bonetti B., Fu L. W., Moon J., Bedwell D. M. 1995; The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 251:334–345 [CrossRef]
    [Google Scholar]
  11. Brierley I., Digard P., Inglis S. C. 1989; Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:537–547 [CrossRef]
    [Google Scholar]
  12. Brown C. M., Tate W. P. 1994; Direct recognition of mRNA stop signals by Escherichia coli polypeptide chain release factor two. J Biol Chem 269:33164–33170
    [Google Scholar]
  13. Brown C. M., Dinesh-Kumar S. P., Miller W. A. 1996; Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J Virol 70:5884–5892
    [Google Scholar]
  14. Buckingham R. H., Grentzmann G., Kisselev L. 1997; Polypeptide chain release factors. Mol Microbiol 24:449–456 [CrossRef]
    [Google Scholar]
  15. Caron F., Meyer E. 1985; Does Paramecium primaurelia use a different genetic code in its macronucleus?. Nature 314:185–188 [CrossRef]
    [Google Scholar]
  16. Caskey T., Forrester W. C., Tate W. P., Ward C. D. 1984; Cloning of the Escherichia coli release factor 2 gene. J Bacteriol 158:365–368
    [Google Scholar]
  17. Chernoff Y. O., Derkach I. L., Inge-Vechtomov S. G. 1993; Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 24:268–270 [CrossRef]
    [Google Scholar]
  18. Chernoff Y. O., Lindquist S. L., Ono B., Inge-Vechtomov S. G., Liebman S. W. 1995; Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI(+)]. Science 268:880–884 [CrossRef]
    [Google Scholar]
  19. Clare J. J., Belcourt M., Farabaugh P. J. 1988; Efficient translational frameshifting occurs within a conserved sequence of the overlap between the two genes of a yeast Ty1 transposon. Proc Natl Acad Sci USA 85:6816–6820 [CrossRef]
    [Google Scholar]
  20. Cox B. S. 1965; Ψ, a cytoplasmic suppressor of super suppressor in yeast. Heredity 20:505–521 [CrossRef]
    [Google Scholar]
  21. Craigen W. J., Lee C. C., Caskey C. T. 1990; Recent advances in peptide chain termination. Mol Microbiol 4:861–865 [CrossRef]
    [Google Scholar]
  22. Crawford D.-J. G., Ito K., Nakamura Y., Tate W. P. 1999; Indirect regulation of translational termination efficiency at highly expressed genes and recoding sites by the factor recycling function of Escherichia coli release factor RF3. EMBO J 18:727–732 [CrossRef]
    [Google Scholar]
  23. Czaplinski K., Ruizechevarria M. J., Paushkin S. V., Han X., Weng Y. M., Perlick H. A., Dietz H. C., Ter-Avanesyan M. D., Peltz S. W. 1998; The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev 12:1665–1677 [CrossRef]
    [Google Scholar]
  24. DePace A. H., Santoso A., Hillner P., Weissman J. S. 1998; A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93:1241–1252 [CrossRef]
    [Google Scholar]
  25. Dever T. E., Feng L., Wek R. C., Cigan A. M., Donahue T. F., Hinnebusch A. G. 1992; Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585–596 [CrossRef]
    [Google Scholar]
  26. Dihanich M. E., Najarian D., Clark R., Gillman E. C., Martin N. C., Hopper A. K. 1987; Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Mol Cell Biol 7:177–184
    [Google Scholar]
  27. Dinesh-Kumar S. P., Brault V., Miller W. A. 1992; Precise mapping and in vitro translation of a trifunctional subgenomic RNA of barley yellow dwarf virus. Virology 187:711–722 [CrossRef]
    [Google Scholar]
  28. Doel S. M., Mccready S. J., Nierras C. R., Cox B. S. 1994; The dominant PNM2(−) mutation which eliminates the psi-factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137:659–670
    [Google Scholar]
  29. Drugeon G., Jean-Jean O., Frolova L., Le Goff X., Philippe M., Kisselev L., Haenni A.-L. 1997; Eukaryotic release factor 1 (eRF1) abolishes readthrough and competes with suppressor tRNAs at all three termination codons in messenger RNA. Nucleic Acids Res 25:2254–2258 [CrossRef]
    [Google Scholar]
  30. Eaglestone S. S., Cox B. S., Tuite M. F. 1999; Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 18:1974–1981 [CrossRef]
    [Google Scholar]
  31. Engelberg-Kulka H. 1981; UGA suppression by normal tRNA Trp in Escherichia coli: codon context effects. Nucleic Acids Res 9:983–991 [CrossRef]
    [Google Scholar]
  32. Eurwilaichitr L., Graves F. M., Stansfield I., Tuite M. F. 1999; The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol Microbiol 32:485–496 [CrossRef]
    [Google Scholar]
  33. Fearon K., McClendon V., Bonetti B., Bedwell D. M. 1994; Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J Biol Chem 269:17802–17808
    [Google Scholar]
  34. Feng Y.-X., Copeland T. D., Oroszlan S., Rein A., Levin J. G. 1990; Identification of amino acids inserted during suppression of UAA and UGA termination codons at the gagpol junction of Moloney murine leukemia virus. Proc Natl Acad Sci USA 87:8860–8863 [CrossRef]
    [Google Scholar]
  35. Feng Y.-X., Yuan H., Rein A., Levin J. G. 1992; Bipartite signal for read-through suppression in murine leukemia virus mRNA: an eight-nucleotide purine-rich sequence immediately downstream of the gag termination codon followed by an RNA pseudoknot. J Virol 66:5127–5132
    [Google Scholar]
  36. Fraser C. M., Gocayne J. D., White O., Adams M., Clayton R., Fleischmann R. D., Bult C. J. 1995; The minimal gene complement of Mycoplasma genitalium. Science 270:397–403 [CrossRef]
    [Google Scholar]
  37. Freistroffer D. V., Pavlov M. Y., MacDougall J., Buckingham R. H., Ehrenberg M. 1997; Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J 16:4126–4133 [CrossRef]
    [Google Scholar]
  38. Freistroffer D. V., Kwiatkowski M., Buckingham R. H., Ehrenberg M. 2000; The accuracy of codon recognition by polypeptide release factors. Proc Natl Acad Sci USA 97:2046–2051 [CrossRef]
    [Google Scholar]
  39. Frolova L., Le Goff X., Rasmussen H. H.9 other authors 1994; A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372:701–703 [CrossRef]
    [Google Scholar]
  40. Frolova L. Y., Tsivkovskii R. Y., Sivolobova G. F., Oparina N. Y., Serpinsky O. I., Blinov V. M., Tatkov S. I., Kisselev L. L. 1999; Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5:1014–1020 [CrossRef]
    [Google Scholar]
  41. Gesteland R. F., Atkins J. F. 1996; Recoding: dynamic reprogramming of translation. Annu Rev Biochem 65:741–768 [CrossRef]
    [Google Scholar]
  42. Glover J. R., Kowal A. S., Schirmer E. C., Patino M. M., Liu J. J., Lindquist S. 1997; Self-seeded fibers formed by Sup35, the protein determinant of [PSI +], a heritable prion-like factor of S. cerevisiae. Cell 89:811–819 [CrossRef]
    [Google Scholar]
  43. Goelet P., Lomonossoff G. P., Butler P. J. G., Akam M. E., Gait M. J., Kam J. 1982; Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci USA 79:5818–5822 [CrossRef]
    [Google Scholar]
  44. Grant C. M., Hinnebusch A. G. 1994; Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 translational control. Mol Cell Biol 14:606–618
    [Google Scholar]
  45. Grant C. M., Miller P. F., Hinnebusch A. G. 1995; Sequences 5′ of the first upstream open reading frame in GCN4 mRNA are required for efficient translational reinitiation. Nucleic Acids Res 23:3980–3988 [CrossRef]
    [Google Scholar]
  46. Grentzmann G., Brechemier-Baey D., Heurgue V., Mora L., Buckingham R. H. 1994; Localization and characterization of the gene encoding release factor RF3 in Escherichia coli . Proc Natl Acad Sci USA 91:5848–5852 [CrossRef]
    [Google Scholar]
  47. Grentzmann G., Brechemier-Baey D., Heurgue-Hamard V., Buckingham R. H. 1995; Function of polypeptide-chain release factor RF3 in Escherichia coli – RF3 action in termination is predominantly at UGA-containing stop signals. J Biol Chem 270:10595–10600 [CrossRef]
    [Google Scholar]
  48. Grimm M., Brunen Nieweler C., Junker V., Heckmann K., Beier H. 1998; The hypotrichous ciliate Euplotes octocarinatus has only one type of tRNA(cys) with GCA anticodon encoded on a single macronuclear DNA molecule. Nucleic Acids Res 26:4557–4565 [CrossRef]
    [Google Scholar]
  49. Guilley H., Wipf-Scheibel C., Richards K., Lecoq H., Jonard G. 1994; Nucleotide sequence of cucurbit aphid-borne yellows luteovirus. Virology 202:1012–1017 [CrossRef]
    [Google Scholar]
  50. Hanyu N., Kuchino Y., Nishimura S., Beier H. 1986; Dramatic events in ciliate evolution – alteration of UAA and UAG termination codons to glutamine codons due to anticodon mutations in two tetrahymena transfer-RNAsGln. EMBO J 5:1307–1311
    [Google Scholar]
  51. Heurgue-Hamard V., Karimi R., Mora L., MacDougall J., Leboeuf C., Grentzmann G., Ehrenberg M., Buckingham R. H. 1998; Ribosome release factor RF4 and termination factor RF3 are involved in dissociation of peptidyl-tRNA from the ribosome. EMBO J 17:808–816 [CrossRef]
    [Google Scholar]
  52. Hinnebusch A. G. 1997; Translational regulation of yeast GCN4. A window on factors that control initiator-tRNA binding to the ribosome. J Biol Chem 272:21661–21664 [CrossRef]
    [Google Scholar]
  53. Hoshino S., Imai M., Mizutani M., Kikuchi Y., Hanaoka F., Ui M., Katada T. 1998; Molecular cloning of a novel member of the eukaryotic polypeptide chain-releasing factors (eRF). Its identification as eRF3 interacting with eRF1. J Biol Chem 273:22254–22259 [CrossRef]
    [Google Scholar]
  54. Hoshino S., Imai M., Kobayashi T., Uchida N., Katada T. 1999; The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3′-poly(A) tail of mRNA. J Biol Chem 274:16677–16680 [CrossRef]
    [Google Scholar]
  55. Inagaki Y., Doolittle W. F. 2000; Evolution of the eukaryote translation termination system: origins of release factors. Mol Biol Evol 17:882–889 [CrossRef]
    [Google Scholar]
  56. Inamine J. M., Ho K.-C., Loechel S., Hu P.-C. 1990; Evidence that UGA is read as a tryptophan codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium and Mycoplasma gallisepticum. J Bacteriol 172:504–506
    [Google Scholar]
  57. Ishikawa M., Meshi T., Motoyoshi F., Takamatsu N., Okada Y. 1986; mutagenesis of the putative replicase genes of tobacco mosaic virus. Nucleic Acids Res 14:8291–8305 [CrossRef]
    [Google Scholar]
  58. Ito K., Ebihara K., Uno M., Nakamura Y. 1996; Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc Natl Acad Sci USA 93:5443–5448 [CrossRef]
    [Google Scholar]
  59. Ito K., Ebihara K., Nakamura Y. 1998a; The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA 4:958–972 [CrossRef]
    [Google Scholar]
  60. Ito K., Uno M., Nakamura Y. 1998b; Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons. Proc Natl Acad Sci USA 95:8165–8169 [CrossRef]
    [Google Scholar]
  61. Ito K., Uno M., Nakamura Y. 2000; A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403:680–684 [CrossRef]
    [Google Scholar]
  62. Jalajakumari M. B., Thomas C. J., Halter R., Manning P. A. 1989; Genes for biosynthesis and assembly of CS3 pili of CFA/II enterotoxigenic Escherichia coli: novel regulation of pilus production by bypassing an amber codon. Mol Microbiol 3:1685–1695 [CrossRef]
    [Google Scholar]
  63. Janosi L., Ricker R., Kaji A. 1996; Dual functions of ribosome recycling factor in protein biosynthesis: disassembling the termination complex and preventing translational errors. Biochimie 78:959–969 [CrossRef]
    [Google Scholar]
  64. Janosi L., Mottagui-Tabar S., Isaksson L. A.7 other authors 1998; Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis. EMBO J 17:1141–1151 [CrossRef]
    [Google Scholar]
  65. Karamyshev A. L., Ito K., Nakamura Y. 1999; Polypeptide release factor eRF1 from Tetrahymena thermophila: cDNA cloning, purification and complex formation with yeast eRF3. FEBS Lett 457:483–488 [CrossRef]
    [Google Scholar]
  66. Karimi R., Pavlov M. Y., Heurgue-Hamard V., Buckingham R. H., Ehrenberg M. 1998; Initiation factors IF1 and IF2 synergistically remove peptidyl-tRNAs with short polypeptides from the p-site of translating Escherichia coli ribosomes. J Mol Biol 281:241–252 [CrossRef]
    [Google Scholar]
  67. Karimi R., Pavlov M. Y., Buckingham R. H., Ehrenberg M. 1999; Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell 3:601–609 [CrossRef]
    [Google Scholar]
  68. Keeling P. J., Doolittle W. F. 1997; Widespread and ancient distribution of a noncanonical genetic code in diplomonads. Mol Biol Evol 14:895–901 [CrossRef]
    [Google Scholar]
  69. Kromayer M., Wilting R., Tormay P., Bock A. 1996; Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB. J Mol Biol 262:413–420 [CrossRef]
    [Google Scholar]
  70. Kuchino Y., Hanyu N., Tashiro F., Nishimura S. 1985; Tetrahymena thermophila glutamine tRNA and its gene that corresponds to UAA termination codon. Proc Natl Acad Sci USA 82:4758–4762 [CrossRef]
    [Google Scholar]
  71. Lang A., Friemert C., Gassen H. G. 1989; On the role of the termination factor RF-2 and the 16S RNA in protein synthesis. Eur J Biochem 180:547–554 [CrossRef]
    [Google Scholar]
  72. Legoff X., Philippe M., Jean-Jean O. 1997; Overexpression of human release factor 1 alone has an antisuppressor effect in human cells. Mol Cell Biol 17:3164–3172
    [Google Scholar]
  73. Leng P., Klatte D. H., Schumann G., Boeke J. D., Steck T. L. 1998; , an LTR retrotransposon of Dictyostelium. Nucleic Acids Res 26:2008–2015 [CrossRef]
    [Google Scholar]
  74. Liu J. J., Lindquist S. 1999; Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature 400:573–576 [CrossRef]
    [Google Scholar]
  75. McCaughan K. K., Brown C. M., Dalphin M. E., Berry M. J., Tate W. P. 1995; Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci USA 92:5431–5435 [CrossRef]
    [Google Scholar]
  76. Major L. L., Poole E. S., Dalphin M. E., Mannering S. A., Tate W. P. 1996; Is the in-frame termination signal of the Escherichia coli release factor-2 frameshift site weakened by a particularly poor context?. Nucleic Acids Res 24:2673–2678 [CrossRef]
    [Google Scholar]
  77. Matthews G. D., Goodwin T. J. D., Butler M. I., Berryman T. A., Poulter R. T. M. 1997; pCal, a highly unusual Ty1/copia retrotransposon from the pathogenic yeast Candida albicans. J Bacteriol 179:7118–7128
    [Google Scholar]
  78. Meyer F., Schmidt H. J., Plumper E., Hasilik A., Mersmann G., Meyer H. E., Engstrom A., Heckmann K. 1991; UGA is translated as cysteine in pheromone-3 of Euplotes octocarinatus. Proc Natl Acad Sci USA 88:3758–3761 [CrossRef]
    [Google Scholar]
  79. Mikuni O., Ito K., Moffat J., Matsumura K., McCaughan K., Nobukuni T., Tate W. P., Nakamura Y. 1994; Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc Natl Acad Sci USA 91:5798–5802 [CrossRef]
    [Google Scholar]
  80. Mottagui-Tabar S., Isaksson L. A. 1998; The influence of the 5′ codon context on translation termination in Bacillus subtilis and Escherichia coli is similar but different from Salmonella typhimurium. Gene 212:189–196 [CrossRef]
    [Google Scholar]
  81. Mottagui-Tabar S., Bjornsson A., Isaksson L. A. 1994; The second to last amino acid in the nascent peptide as a codon context determinant. EMBO J 13:249–257
    [Google Scholar]
  82. Mottagui-Tabar S., Tuite M. F., Isaksson L. A. 1998; The influence of 5′ codon context on translation termination in Saccharomyces cerevisiae. Eur J Biochem 257:249–254 [CrossRef]
    [Google Scholar]
  83. Mueller P. P., Hinnebusch A. G. 1986; Multiple upstream AUG codons mediate translational control of GCN4. Cell 45:201–207 [CrossRef]
    [Google Scholar]
  84. Newnam G. P., Wegrzyn R. D., Lindquist S. L., Chernoff Y. O. 1999; Antagonistic interactions between yeast chaperones hsp104 and hsp70 in prion curing. Mol Cell Biol 19:1325–1333
    [Google Scholar]
  85. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B. F., Nyborg J. 1995; Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270:1464–1472 [CrossRef]
    [Google Scholar]
  86. Parsell D. A., Kowal A. S., Singer M. A., Lindquist S. 1994; Protein disaggregation mediated by heat shock protein Hsp104. Nature 372:475–478 [CrossRef]
    [Google Scholar]
  87. Patino M. M., Liu J. J., Glover J. R., Lindquist S. 1996; Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626 [CrossRef]
    [Google Scholar]
  88. Paushkin S. V., Kushnirov V. V., Smirnov V. N., Ter-Avanesyan M. D. 1996; Propagation of the yeast prion-like [psi(+)] determinant is mediated by oligomerization of the Sup35-encoded polypeptide-chain release factor. EMBO J 15:3127–3134
    [Google Scholar]
  89. Paushkin S. V., Kushnirov V. V., Smirnov V. N., Ter-Avanesyan M. D. 1997a; Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol Cell Biol 17:2798–2805
    [Google Scholar]
  90. Paushkin S. V., Kushnirov V. V., Smirnov V. N., Ter-Avanesyan M. D. 1997b; propagation of the prion-like state of yeast Sup35 protein. Science 277:381–383 [CrossRef]
    [Google Scholar]
  91. Pavlov M. Y., Freistroffer D. V., MacDougall J., Buckingham R. H., Ehrenberg M. 1997; Fast recycling of Escherichia coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3. EMBO J 16:4134–4141 [CrossRef]
    [Google Scholar]
  92. Pelham H. R. B. 1978; Leaky UAG termination codon in tobacco mosaic virus RNA. Nature 272:469–471 [CrossRef]
    [Google Scholar]
  93. Poole E. S., Brown C. M., Tate W. P. 1995; The identity of the base following the stop codon determines the efficiency of in-vivo translational termination in Escherichia coli. EMBO J 14:151–158
    [Google Scholar]
  94. Poole E. S., Major L. L., Mannering S. A., Tate W. P. 1998; Translation termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals. Nucleic Acids Res 26:954–960 [CrossRef]
    [Google Scholar]
  95. Pure G. A., Robinson G. W., Naumovski L., Friedberg E. C. 1985; Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast transfer RNA-Gln gene. J Mol Biol 183:31–42 [CrossRef]
    [Google Scholar]
  96. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. 1974; Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250:546–551 [CrossRef]
    [Google Scholar]
  97. Rolland N., Janosi L., Block M. A.7 other authors 1999; Plant ribosome recycling factor homologue is a chloroplastic protein and is bactericidal in Escherichia coli carrying temperature-sensitive ribosome recycling factor. Proc Natl Acad Sci USA 96:5464–5469 [CrossRef]
    [Google Scholar]
  98. Schirmer E. C., Lindquist S. 1997; Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP. Proc Natl Acad Sci USA 94:13932–13937 [CrossRef]
    [Google Scholar]
  99. Scolnick E., Tomkins R., Caskey T., Nirenberg M. 1968; Release factors differing in specificity for terminator codons. Proc Natl Acad Sci USA 61:768–774 [CrossRef]
    [Google Scholar]
  100. Selmer M., Al Karadaghi S., Hirokawa G., Kaji A., Liljas A. 1999; Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Science 286:2349–2352 [CrossRef]
    [Google Scholar]
  101. Skuzeski J. M., Atkins J. F. 1990; Analysis of leaky viral translation termination codons in vivo by transient expression of improved beta-glucuronidase vectors. Plant Mol Biol 15:65–79 [CrossRef]
    [Google Scholar]
  102. Skuzeski J. M., Nichols L. M., Gesteland R. F., Atkins J. F. 1991; The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J Mol Biol 218:365–373 [CrossRef]
    [Google Scholar]
  103. Somogyi P., Jenner A. J., Brierley I., Inglis S. C. 1993; Ribosomal pausing during translation of an RNA pseudoknot. Mol Cell Biol 13:6931–6940
    [Google Scholar]
  104. Song H., Mugnier P., Webb H. M., Evans D. R., Tuite M. F., Hemmings B. A., Barford D. 2000; The crystal structure of human eukaryotic release factor eRF1 – mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100:311–321 [CrossRef]
    [Google Scholar]
  105. Stansfield I., Tuite M. F. 1994; Polypeptide chain termination in Saccharomyces cerevisiae. Curr Genet 25:385–395 [CrossRef]
    [Google Scholar]
  106. Stansfield I., Jones K. M., Kushnirov V. V.7 other authors 1995; The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14:4365–4373
    [Google Scholar]
  107. Stansfield I., Eurwilaichitr L., Tuite M. F. 1996; Depletion in the levels of the release factor eRF1 causes reduction in the efficiency of translation termination in yeast. Mol Microbiol 20:1135–1143 [CrossRef]
    [Google Scholar]
  108. Suppmann S., Persson B. C., Bock A. 1999; Dynamics and efficiency in vivo of UGA-directed selenocysteine insertion at the ribosome. EMBO J 18:2284–2293 [CrossRef]
    [Google Scholar]
  109. Ter-Avanesyan M. D., Kushnirov V. V., Dagkesamanskaya A. R., Didichenko S. A., Chernoff Y. O., Inge-Vechtomov S. G., Smirnov V. N. 1993; Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7:683–692 [CrossRef]
    [Google Scholar]
  110. Tuite M. F., Mundy C. R., Cox B. S. 1981; Agents that cause a high frequency of genetic change from [psi+] to [psi−] in Saccharomyces cerevisiae. Genetics 98:691–711
    [Google Scholar]
  111. Urban C., Beier H. 1995; Cysteine tRNAs of plant origin as novel UGA suppressors. Nucleic Acids Res 23:4591–4597 [CrossRef]
    [Google Scholar]
  112. Urban C., Zerfass K., Fingerhut C., Beier H. 1996; UGA suppression by tRNACmCATrp occurs in diverse virus RNAs due to a limited influence of the codon context. Nucleic Acids Res 24:3424–3430 [CrossRef]
    [Google Scholar]
  113. Vilela C., Linz B., Rodrigues-Pousada C., McCarthy J. E. G. 1998; The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. Nucleic Acids Res 26:1150–1159 [CrossRef]
    [Google Scholar]
  114. Weiner A. M., Weber K. 1973; A single UGA codon functions as a natural termination signal in the coliphage Qβ coat protein cistron. J Mol Biol 80:837–855 [CrossRef]
    [Google Scholar]
  115. Weiss R. B., Murphy J. P., Gallant J. A. 1984; Genetic screen for cloned release factor genes. J Bacteriol 158:362–364
    [Google Scholar]
  116. Weiss W. A., Friedberg E. C. 1986; Normal yeast tranfer RNACAG Gln can suppress amber codons and is encoded by an essential gene. J Mol Biol 192:725–735 [CrossRef]
    [Google Scholar]
  117. Wickner R. B. 1994; [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569 [CrossRef]
    [Google Scholar]
  118. Wills N. M., Gesteland R. F., Atkins J. F. 1991; Evidence that a downstream pseudoknot is required for translational read-through of the Moloney murine leukemia virus gag stop codon. Proc Natl Acad Sci USA 88:6991–6995 [CrossRef]
    [Google Scholar]
  119. Yamao F., Muto A., Kawauchi Y., Iwami M., Iwagami S., Azumi Y., Osawa S. 1985; UGA is read as tryptophan in Mycoplasma capricolum. Proc Natl Acad Sci USA 82:2306–2309 [CrossRef]
    [Google Scholar]
  120. Yoshinaka Y., Katoh I., Copeland T. D., Oroszlan S. 1985; Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci U S A 82:1618–1622 [CrossRef]
    [Google Scholar]
  121. Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M. 1995; Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14:4065–4072
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-255
Loading
/content/journal/micro/10.1099/00221287-147-2-255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error