1887

Abstract

Original genome annotations need to be regularly updated if the information they contain is to remain accurate and relevant. Here the complete re-annotation of the genome sequence of strain H37Rv is presented almost 4 years after the first submission. Eighty-two new protein-coding sequences (CDS) have been included and 22 of these have a predicted function. The majority were identified by manual or automated re-analysis of the genome and most of them were shorter than the 100 codon cut-off used in the initial genome analysis. The functional classification of 643 CDS has been changed based principally on recent sequence comparisons and new experimental data from the literature. More than 300 gene names and over 1000 targeted citations have been added and the lengths of 60 genes have been modified. Presently, it is possible to assign a function to 2058 proteins (52% of the 3995 proteins predicted) and only 376 putative proteins share no homology with known proteins and thus could be unique to

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-10-2967
2002-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/10/1482967a.html?itemId=/content/journal/micro/10.1099/00221287-148-10-2967&mimeType=html&fmt=ahah

References

  1. Altschul S. F, Gish W, Miller W, Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Bentley S. D, Chater K. F, Cerdeno-Tarraga A. M. 40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147
    [Google Scholar]
  3. Betts J. C, Dodson P, Quan S, Lewis A. P, Thomas P. J, Duncan K., McAdam R. A. 2000; Comparison of the proteome of the Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC1551. Microbiology 146:3205–3216
    [Google Scholar]
  4. Bocs S, Danchin A., Medigue C. 2002; Re-annotation of genome microbial CoDing-Sequences: finding new genes and inaccurately annotated genes. BMC Bioinformatics 3:1–5
    [Google Scholar]
  5. Braibant M, Gilot P., Content J. 2000; The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis . FEMS Microbiol Rev 24:449–467
    [Google Scholar]
  6. Cole S. T, Brosch R, Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  7. Cole S. T, Eiglmeier K, Parkhill J. 40 other authors 2001; Massive gene decay in the leprosy bacillus. Nature 409:1007–1011
    [Google Scholar]
  8. Dandekar T, Huynen M, Regula J. T. 10 other authors 2000; Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. Nucleic Acids Res 28:3278–3288
    [Google Scholar]
  9. Eiglmeier K, Parkhill J, Honore N. 12 other authors 2001; The decaying genome of Mycobacterium leprae . Lepr Rev 72:387–398
    [Google Scholar]
  10. Falquet L, Pagni M, Bucher P, Hulo N, Sigrist C. J, Hofmann K., Bairoch A. 2002; The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238
    [Google Scholar]
  11. Fleischmann R. D, Adams M. D, White O. 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  12. Gaasterland T., Oprea M. 2001; Whole-genome analysis: annotations and updates. Curr Opin Struct Biol 11:377–381
    [Google Scholar]
  13. Gassel M, Mollenkamp T, Puppe W., Altendorf K. 1999; The KdpF subunit is part of the K(+)-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro . J Biol Chem 274:37901–37907
    [Google Scholar]
  14. Glickman M. S, Cox J. S., Jacobs W. R. Jr 2000; A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis . Mol Cell 5:717–727
    [Google Scholar]
  15. Jungblut P. R, Schaible U. E, Mollenkopf H. J. 7 other authors 1999; Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 33:1103–1117
    [Google Scholar]
  16. Jungblut P. R, Muller E. C, Mattow J., Kaufmann S. H. 2001; Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics. Infect Immun 69:5905–5907
    [Google Scholar]
  17. Kersten M. A, Muller Y, Baars J. J, Op den Camp H. J, van der Drift C, Van Griensven L. J, Visser J., Schaap P. J. 1999; NAD+-dependent glutamate dehydrogenase of the edible mushroom Agaricus bisporus : biochemical and molecular characterization. Mol Gen Genet 261:452–462
    [Google Scholar]
  18. Laqueyrerie A, Militzer P, Romain F, Eiglmeier K, Cole S. T., Marchal G. 1995; Cloning, sequencing, and expression of the apa gene coding for the Mycobacterium tuberculosis 45/47-kilodalton secreted antigen complex. Infect Immun 63:4003–4010
    [Google Scholar]
  19. Lu C. D., Abdelal A. T. 2001; The gdhB gene of Pseudomonas aeruginosa encodes an arginine-inducible NAD(+)-dependent glutamate dehydrogenase which is subject to allosteric regulation. J Bacteriol 183:490–499
    [Google Scholar]
  20. Minambres B, Olivera E. R, Jensen R. A., Luengo J. M. 2000; A new class of glutamate dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus . J Biol Chem 275:39529–39542
    [Google Scholar]
  21. Mollenkopf H. J, Jungblut P. R, Raupach B, Mattow J, Lamer S, Zimny-Arndt U, Schaible U. E., Kaufmann S. H. 1999; A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Electrophoresis 20:2172–2180
    [Google Scholar]
  22. Moszer I, Jones L. M, Moreira S, Fabry C., Danchin A. 2002; SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res 30:62–65
    [Google Scholar]
  23. Mukamolova G. V, Kaprelyants A. S, Young D. I, Young M., Kell D. B. 1998; A bacterial cytokine. Proc Natl Acad Sci USA 95:8916–8921
    [Google Scholar]
  24. Nielsen H, Engelbrecht J, Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6
    [Google Scholar]
  25. Paulsen I. T, Nguyen L, Sliwinski M. K, Rabus R., Saier M. H. Jr 2000; Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol 301:75–100
    [Google Scholar]
  26. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448
    [Google Scholar]
  27. Riley M. 1993; Functions of the gene products of Escherichia coli . Microbiol Rev 57:862–952
    [Google Scholar]
  28. Rosenkrands I, Weldingh K, Jacobsen S, Hansen C. V, Florio W, Gianetri I., Andersen P. 2000a; Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis 21:935–948
    [Google Scholar]
  29. Rosenkrands I, King A, Weldingh K, Moniatte M, Moertz E., Andersen P. 2000b; Towards the proteome of Mycobacterium tuberculosis . Electrophoresis 21:3740–3756
    [Google Scholar]
  30. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M. A., Barrell B. 2000; Artemis: sequence visualization and annotation. Bioinformatics 16:944–945
    [Google Scholar]
  31. Schorey J. S, Li Q, McCourt D. W, Bong-Mastek M, Clark-Curtiss J. E, Ratliff T. L., Brown E. J. 1995; A Mycobacterium leprae gene encoding a fibronectin binding protein is used for efficient invasion of epithelial cells and Schwann cells. Infect Immun 63:2652–2657
    [Google Scholar]
  32. Serres M. H, Gopal S, Nahum L. A, Liang P, Gaasterland T., Riley M. 2001; A functional update of the Escherichia coli K-12 genome. Genome Biol 2:0035.1–0035.7
    [Google Scholar]
  33. Sonnhammer E. L, von Heijne G., Krogh A. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182
    [Google Scholar]
  34. Tekaia F, Gordon S. V, Garnier T, Brosch R, Barrell B. G., Cole S. T. 1999; Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber Lung Dis 79:329–342
    [Google Scholar]
  35. Weldingh K, Rosenkrands I, Jacobsen S, Rasmussen P. B, Elhay M. J., Andersen P. 1998; Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins. Infect Immun 66:3492–3500
    [Google Scholar]
  36. Zahrt T. C., Deretic V. 2001; Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc Natl Acad Sci USA 98:12706–12711
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-10-2967
Loading
/content/journal/micro/10.1099/00221287-148-10-2967
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error