1887

Abstract

The gene of encodes the pseudouridine-55 (ψ55) synthase and is responsible for modifying all tRNA molecules in the cell at the U55 position. A null mutant grew normally on all growth media tested, but exhibited a competitive disadvantage in extended co-culture with its wild-type progenitor. The mutant phenotype could be complemented by both the cloned gene and by a D48C, catalytically inactive allele of . The mutant also exhibited a defect in survival of rapid transfer from 37 to 50 °C. This mutant phenotype could be complemented by the cloned gene but not by a D48C, catalytically inactive allele of . The temperature sensitivity of mutants could be enhanced by combination with a mutation in the gene, encoding an mU-methyltransferase, modifying the universal U54 tRNA nucleoside, but not by mutations in , encoding the enzyme catalysing the formation of Gm18. The mutant proteome contained altered levels of intermediates involved in biogenesis of the outer-membrane proteins OmpA and OmpX. The mutation also reduced the basal expression from two σ promoters, and P3. Three novel aspects to the phenotype of mutants were identified. Importantly the data support the hypothesis that TruB-effected ψ55 modification of tRNA is not essential, but contributes to thermal stress tolerance in , possibly by optimizing the stability of the tRNA population at high temperatures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3511
2002-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483511a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3511&mimeType=html&fmt=ahah

References

  1. Amann E, Ochs B., Abel K.-J. 1988; Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli . Gene 69:301–315
    [Google Scholar]
  2. Becker H. F, Motorin Y, Planta R. J., Grosjean H. 1997; The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res 25:4493–4499
    [Google Scholar]
  3. Bjork G. R., Neidhardt F. C. 1975; Physiological and biochemical studies on the function of 5-methyluridine in the transfer ribonucleic acid of Escherichia coli . J Bacteriol 124:99–111
    [Google Scholar]
  4. Buck M., Griffiths E. 1982; Iron mediated methylation of tRNA as a regulator of operon expression in Escherichia coli . Nucleic Acids Res 10:2609–2624
    [Google Scholar]
  5. Connolly D. M., Winkler M. E. 1991; Structure of Escherichia coli K-12 miaA and characterization of the mutator phenotype caused by miaA insertion mutations. J Bacteriol 173:1711–1721
    [Google Scholar]
  6. Danese P. N, Snyder W. B, Cosma C. L, Davis L. J. B., Silhavy T. J. 1995; The Cpx two-component transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DepP. Genes Dev 9:387–398
    [Google Scholar]
  7. De Las Penas A, Connolly L., Gross C. A. 1997; σE is an essential sigma factor in Escherichia coli . J Bacteriol 179:6862–6864
    [Google Scholar]
  8. Dinnbier U, Limpinsel E, Schmid R., Bakker E. P. 1988; Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150:348–357
    [Google Scholar]
  9. Durand J. M, Okada N, Tobe T. 7 other authors 1994; vacC , a virulence-associated chromosomal locus of Shigella flexneri , is homologous to tgt , a gene encoding tRNA-guanine transglycolase (Tgt) of Escherichia coli K12. J Bacteriol 176:4627–4634
    [Google Scholar]
  10. Durand J. M, Bjork G. R, Kuwae A, Yoshikawa M., Sasakawa C. 1997; The modified nucleoside 2-methylthio- N 6-isopentyladenosine in tRNA of Shigella flexneri is required for expression of virulence genes. J Bacteriol 179:5777–5782
    [Google Scholar]
  11. Emilsson V, Naslund A. K., Kurland C. G. 1992; Thiolation of transfer RNA in Escherichia coli varies with growth rate. Nucleic Acids Res 20:4499–4505
    [Google Scholar]
  12. Erickson J. W., Gross C. A. 1989; Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev 3:1462–1471
    [Google Scholar]
  13. Erickson J. W, Vaughn V, Walter W. A, Neidhardt F. C., Gross C. A. 1987; Regulation of the promoters and transcripts of rpoH , the Escherichia coli heat shock regulatory gene. Genes Dev 1:419–432
    [Google Scholar]
  14. Gutgsell N, Englund N, Niu L, Kaya Y, Lane B. G., Ofengand J. 2000; Deletion of the Escherichia coli pseudouridine synthase gene truB blocks formation of pseudouridine 55 in tRNA in vivo , does not affect exponential growth, but confers a strong selective disadvantage in competition with wild-type cells. RNA 6:1870–1881
    [Google Scholar]
  15. Hiratsu K, Amemura M, Nashimoto H, Shinagawa H., Makino K. 1995; The rpoE gene of Escherichia coli , which encodes σE, is essential for bacterial growth at high temperature. J Bacteriol 177:2918–2922
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  17. Li J. N., Bjork G. R. 1995; 1-Methylguanosine deficiency of tRNA influences cognate codon interaction and metabolism in Salmonella typhimurium . J Bacteriol 177:
    [Google Scholar]
  18. Lipinska B, Sharma S., Georgopoulos C. 1988; Sequence analysis and regulation of the htrA gene of Escherichia coli : a sigma 32-independent mechanism of heat-inducible transcription. Nucleic Acids Res 16:10053–10067
    [Google Scholar]
  19. Lipinska B, Fayet O, Baird L., Georgopoulos C. 1989; Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171:1574–1584
    [Google Scholar]
  20. McLaggan D, Naprstek J, Buurman E. T., Epstein W. 1994; Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli . J Biol Chem 269:1911–1917
    [Google Scholar]
  21. Mecsas J, Rouviere P. E, Erickson J. W, Donohue T. J., Gross C. A. 1993; The activity of σE, an Escherichia coli heat-inducible σ-factor, is modulated by expression of outer membrane proteins. Genes Dev 7:2618–2628
    [Google Scholar]
  22. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Milton D. L, O’Toole R, Horstedt P., Wolf-Watz H. 1996; Flagellin A is essential for the virulence of Vibrio anguillarum . J Bacteriol 178:1310–1319
    [Google Scholar]
  24. Mizuno T, Chou M.-Y., Inouye M. 1984; A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA. Proc Natl Acad Sci USA 81:1966–1970
    [Google Scholar]
  25. Nazarenko I. A, Harrington K. M., Uhlenbeck O. C. 1994; Many of the conserved nucleotides of tRNA(Phe) are not essential for ternary complex formation and peptide elongation. EMBO J 13:2464–2471
    [Google Scholar]
  26. Nurse K, Wrzesinski J, Bakin A, Lane B. G., Ofengand J. 1995; Purification, cloning, and properties of the tRNA psi 55 synthase from Escherichia coli . RNA 1:102–112
    [Google Scholar]
  27. Persson B. C. 1993; Modification of tRNA as a regulatory device. Mol Microbiol 8:1011–1016
    [Google Scholar]
  28. Persson B. C, Gustafsson C, Berg D. E., Björk G. R. 1992; The gene for a tRNA modifying enzyme, m5U54-methyltransferase, is essential for viability in Escherichia coli . Proc Natl Acad Sci USA 89:3995–3998
    [Google Scholar]
  29. Persson B. C, Jäger G., Gustafsson C. 1997; The spoU gene of Escherichia coli, the fourth gene of the spoT operon, is essential for tRNA(Gm18) 2′- O -methyltransferase activity. Nucleic Acids Res 25:4093–4097
    [Google Scholar]
  30. Persson B. C, Olafsson O, Lundgren H. K, Hederstedt L., Bjork G. R. 1998; The ms2io6A37 modification of tRNA in Salmonella typhimurium regulates growth on citric acid cycle intermediates. J Bacteriol 180:3144–3151
    [Google Scholar]
  31. Piddock L. J. V, Traynor E. A., Wise R. 1990; A comparison of the mechanisms of decreased susceptibility of aztreonam-resistant and ceftazidime-resistant Enterobacteriaceae . J Antimicrob Chemother 26:749–762
    [Google Scholar]
  32. Raina S, Missiakas D., Georgopoulos C. 1995; The rpoE gene encoding the σE24) heat shock sigma factor of Escherichia coli . EMBO J 14:1043–1055
    [Google Scholar]
  33. Ramabhadran T. V., Jagger J. 1975; Evidence against DNA as the target for 334 nm-induced growth delay in Escherichia coli . Photochem Photobiol 21:227–233
    [Google Scholar]
  34. Ramamurthy V, Swann S. L, Paulson J. L, Spedaliere C. J., Mueller E. G. 1999; Critical aspartic acid residues in pseudouridine synthases. J Biol Chem 274:22225–22230
    [Google Scholar]
  35. Raychaudhuri S, Niu L, Conrad J, Lane B. G., Ofengand J. 1999; Functional effect of deletion and mutation of the Escherichia coli ribosomal RNA and tRNA pseudouridine synthase RluA. J Biol Chem 274:18880–18886
    [Google Scholar]
  36. Roe A. J, McLaggan D, Davidson I, O’Byrne C., Booth I. R. 1998; Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol 180:767–772
    [Google Scholar]
  37. Rouviere P. E, De Las Penas A, Mecsas J, Lu C. Z, Rudd K. E., Gross C. A. 1995; rpoE , the gene encoding the second heat-shock sigma factor, σE, in Escherichia coli . EMBO J 14:1032–1042
    [Google Scholar]
  38. Rudinger J, Blechschmidt B, Ribeiro S., Sprinzl M. 1994; Minimalist aminoacylated RNAs as efficient substrates for elongation factor Tu. Biochemistry 33:5682–5688
    [Google Scholar]
  39. Sage A. E, Vasil A. I., Vasil M. L. 1997; Molecular characterisation of mutants affected in the osmoprotectant-dependent induction of phospholipase C in Pseudomonas aeruginosa PAO1. Mol Microbiol 23:43–56
    [Google Scholar]
  40. Singer M, Baker T. A, Schnitzler G. 7 other authors 1989; A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli . Microbiol Rev 53:1–24
    [Google Scholar]
  41. Sprinzl M, Steegborg C, Hubel F., Steinberg S. 1996; Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 24:68–72
    [Google Scholar]
  42. Stokes N. R. 2000 Analysis of the function and regulation of mechanosensitive channels in bacteria PhD Thesis University of Aberdeen;
    [Google Scholar]
  43. Tötemeyer S, Booth N. A, Nichols W. W, Dunbar B., Booth I. R. 1998; From famine to feast: the role of methylglyoxal production in Escherichia coli . Mol Microbiol 27:553–562
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3511
Loading
/content/journal/micro/10.1099/00221287-148-11-3511
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error