1887

Abstract

The amino acid sequence of the signal transducer P (GlnB) of the oceanic photosynthetic prokaryote strain PCC 9511 displays a typical cyanobacterial signature and is phylogenetically related to all known cyanobacterial genes, but forms a distinct subclade with two other marine cyanobacteria. P of was not phosphorylated under the conditions tested, despite its highly conserved primary amino acid sequence, including the seryl residue at position 49, the site for the phosphorylation of the protein in the cyanobacterium PCC 7942. Moreover, lacks nitrate and nitrite reductase activities and does not take up nitrate and nitrite. This strain, however, expresses a low- and a high-affinity transport system for inorganic carbon (C; 240 and 4 μM, respectively), a result consistent with the unphosphorylated form of P acting as a sensor for the control of C acquisition, as proposed for the cyanobacterium PCC 6803. The present data are discussed in relation to the genetic information provided by the MED4 genome sequence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2405
2002-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482405a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2405&mimeType=html&fmt=ahah

References

  1. Arcondéguy T., Jack R., Merrick M. 2001; PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105 [CrossRef]
    [Google Scholar]
  2. Atkinson M. R., Ninfa A. J. 1998; Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli . Mol Microbiol 29:431–447 [CrossRef]
    [Google Scholar]
  3. Bédu S., Pozuelos P., Cami B., Joset F. 1995; Uptake of inorganic carbon in the cyanobacterium Synechocystis PCC6803: physiological and genetic evidence for a high-affinity uptake system. Mol Microbiol 18:559–568 [CrossRef]
    [Google Scholar]
  4. Bonfil D. J., Ronen-Tarazi M., Sültemeyer D., Lieman-Hurwitz J., Schatz D., Kaplan A. 1998; A putative \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(HCO_{3}^{{-}}\) \end{document} transporter in the cyanobacterium Synechococcus sp. strain PCC 7942. FEBS Lett 430:236–240 [CrossRef]
    [Google Scholar]
  5. Cheah E., Carr P. D., Suffolk P. M., Vasudevan S. G., Dixon N. E., Ollis D. L. 1994; Structure of the Escherichia coli signal transducing protein PII . Structure 2:981–990 [CrossRef]
    [Google Scholar]
  6. Damerval T., Castets A. M., Guglielmi G., Houmard J., Tandeau de Marsac N. 1989; Occurrence and distribution of gas vesicle genes among cyanobacteria. J Bacteriol 171:1445–1452
    [Google Scholar]
  7. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1988; Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565 [CrossRef]
    [Google Scholar]
  10. Forchhammer K. 1999; The PII protein in Synechococcus PCC 7942 senses and signals 2-oxoglutarate under ATP-replete conditions. In The Phototrophic Prokaryotes pp 549–553 Edited by Löffelhardt W., Schmetterer G., Peschek G. A. New York: Kluwer/Plenum;
    [Google Scholar]
  11. Forchhammer K., Hedler A. 1997; Phosphoprotein PII from cyanobacteria. Analysis of functional conservation with the PII signal-transduction protein from Escherichia coli . Eur J Biochem 244:869–875 [CrossRef]
    [Google Scholar]
  12. Forchhammer K., Tandeau de Marsac N. 1994; The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. J Bacteriol 176:84–91
    [Google Scholar]
  13. Forchhammer K., Tandeau de Marsac N. 1995a; Functional analysis of the phosphoprotein PII ( glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 177:2033–2040
    [Google Scholar]
  14. Forchhammer K., Tandeau de Marsac N. 1995b; Phosphorylation of the PII protein ( glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942: analysis of in vitro kinase activity. J Bacteriol 177:5812–5817
    [Google Scholar]
  15. Hanson E. H., Forchhammer K., Tandeau de Marsac N., Meeks J. C. 1998; Characterization of the glnB gene product of Nostoc punctiforme strain ATCC 29133: glnB or the PII protein may be essential. Microbiology 144:1537–1547 [CrossRef]
    [Google Scholar]
  16. Harano Y., Suzuki I., Maeda S.-I., Kaneko T., Tabata S., Omata T. 1997; Identification and nitrogen regulation of the cyanase gene from the cyanobacteria Synechocystis sp. strain PCC 6803 and Synechococcus sp. strain PCC 7942. J Bacteriol 179:5744–5750
    [Google Scholar]
  17. Herrero A., Muro-Pastor A. M., Flores E. 2001; Nitrogen control in cyanobacteria. J Bacteriol 183:411–425 [CrossRef]
    [Google Scholar]
  18. Hisbergues M., Jeanjean R., Joset F., Tandeau de Marsac N., Bédu S. 1999; Protein PII regulates both inorganic carbon and nitrate uptake and is modified by a redox signal in Synechocystis PCC 6803. FEBS Lett 463:216–220 [CrossRef]
    [Google Scholar]
  19. Hsieh M.-H., Lam H.-M., van de Loo F. J., Coruzzi G. 1998; A PII-like protein in Arabidopsis : putative role in nitrogen sensing. Proc Natl Acad Sci USA 95:13965–13970 [CrossRef]
    [Google Scholar]
  20. Irmler A., Forchhammer K. 2001; A PP2C-type phosphatase dephosphorylates the PII signaling protein in the cyanobacterium Synechocystis PCC 6803. Proc Natl Acad Sci USA 98:12978–12983 [CrossRef]
    [Google Scholar]
  21. Irmler A., Sanner S., Dierks H., Forchhammer K. 1997; Dephosphorylation of the phosphoprotein PII in Synechococcus PCC 7942: identification of an ATP and 2-oxoglutarate-regulated phosphatase activity. Mol Microbiol 26:81–90 [CrossRef]
    [Google Scholar]
  22. Jaggi R., Ybarlucea W., Cheah E., Carr P. D., Edwards K. J., Ollis D. L., Vasudevan S. G. 1996; The role of the T-loop of the signal transducing protein PII from Escherichia coli . FEBS Lett 391:223–228 [CrossRef]
    [Google Scholar]
  23. Jiang P., Ninfa A. J. 1999; Regulation of autophosphorylation of Escherichia coli nitrogen regulator II by the PII signal transduction protein. J Bacteriol 181:1906–1911
    [Google Scholar]
  24. Jiang P., Peliska J. A., Ninfa A. J. 1998a; Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7 . 7.59) of Escherichia coli and its interaction with the PII protein. Biochemistry 37:12782–12794 [CrossRef]
    [Google Scholar]
  25. Jiang P., Peliska J. A., Ninfa A. J. 1998b; Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of ntr gene transcription in Escherichia coli . Biochemistry 37:12795–12801 [CrossRef]
    [Google Scholar]
  26. Jiang P., Peliska J. A., Ninfa A. J. 1998c; The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. Biochemistry 37:12802–12810 [CrossRef]
    [Google Scholar]
  27. Kamberov E. S., Atkinson M. R., Ninfa A. J. 1995; The Escherichia coli PII signal transduction protein is activated upon binding 2-ketoglutarate and ATP. J Biol Chem 270:17797–17807 [CrossRef]
    [Google Scholar]
  28. Laloui W., Palinska K. A., Rippka R., Partensky F., Tandeau de Marsac N., Herdman M., Iteman I. 2002; Genotyping of axenic and non-axenic isolates of the genus Prochlorococcus and the OMF-‘ Synechococcus clade’ by size, sequence analysis or RFLP of the internal transcribed spacer of the ribosomal operon. Microbiology 148:453–465
    [Google Scholar]
  29. Lee H.-M., Flores E., Herrero A., Houmard J., Tandeau de Marsac N. 1998; A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacterium. FEBS Lett 427:291–295 [CrossRef]
    [Google Scholar]
  30. Lee H.-M., Vásquez-Bermúdez M. F., Tandeau de Marsac N. 1999; The global nitrogen regulator NtcA regulates transcription of the signal transducer PII (GlnB) and influences its phosphorylation level in response to nitrogen and carbon supplies in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 181:2697–2702
    [Google Scholar]
  31. Lee H.-M., Flores E., Forchhammer K., Herrero A., Tandeau de Marsac N. 2000; Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII-mediated regulation of nitrate and nitrite uptake in the cyanobacterium Synechococcus sp. PCC 7942. Eur J Biochem 267:1–11 [CrossRef]
    [Google Scholar]
  32. Leonard C. J., Aravind L., Koonin E. V. 1998; Novel families of putative protein kinases in bacteria and archaea: evolution of the ‘eukaryotic’ protein kinase superfamily. Genome Res 8:1038–1047
    [Google Scholar]
  33. Liotenberg S., Campbell D., Castets A. M., Houmard J., Tandeau de Marsac N. 1996; Modification of the PII protein in response to carbon and nitrogen availability in filamentous heterocystous cyanobacteria. FEMS Microbiol Lett 144:185–190 [CrossRef]
    [Google Scholar]
  34. Mackinney G. 1941; Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322
    [Google Scholar]
  35. Merrick M. J., Edwards R. A. 1995; Nitrogen control in bacteria. Microbiol Rev 59:604–622
    [Google Scholar]
  36. Muro-Pastor M. I., Reyes J. C., Florencio F. J. 2001; Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate. J Biol Chem 276:38320–38328
    [Google Scholar]
  37. Ninfa A. J., Atkinson M. R. 2000; PII signal transduction proteins. Trends Microbiol 8:172–179 [CrossRef]
    [Google Scholar]
  38. Omata T., Gohta S., Takahashi Y., Harano Y., Maeda S.-I. 2001; Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol 183:1891–1898 [CrossRef]
    [Google Scholar]
  39. Palinska K. A., Jahns T., Rippka R., Tandeau de Marsac N. 2000; Prochlorococcus marinus strain PCC 9511, a picoplanktonic cyanobacterium, synthesizes the smallest urease. Microbiology 146:3099–3107
    [Google Scholar]
  40. Partensky F., Hess W. R., Vaulot D. 1999; Prochlorococcus , a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127
    [Google Scholar]
  41. Reith M., Munholland J. 1993; A high-resolution gene map of the chloroplast genome of the red alga Porphyra purpurea . Plant Cell 5:465–475 [CrossRef]
    [Google Scholar]
  42. Reitzer L. J. 1996; Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, l-alanine and d-alanine. In Escherichia coli and Salmonella – Cellular and Molecular Biology pp 391–407 Edited by Curtiss I. R., Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E., Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  43. Rippka R., Coursin T., Hess W., Lichtlé C., Scanlan D. J., Palinska K. A., Iteman I., Partensky F., Houmard J., Herdman M. 2000; Prochlorococcus marinus Chisholm et al. 1992, subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a 2 /b 2-containing cyanobacterium ( Oxyphotobacteria ). Int J Syst Evol Microbiol 50:1833–1847
    [Google Scholar]
  44. Sakamoto T., Inoue-Sakamoto K., Bryant D. A. 1999; A novel nitrate/nitrite permease in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 181:7363–7372
    [Google Scholar]
  45. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Shi L., Potts M., Kenelly P. J. 1998; The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Lett 22:229–253 [CrossRef]
    [Google Scholar]
  47. Shibata M., Ohkawa H., Kaneko T., Fukuzawa H., Tabata S., Kaplan A., Ogawa T. 2001; Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci USA 98:11789–11794 [CrossRef]
    [Google Scholar]
  48. Turner S. 1997; Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol (Suppl) 11:13–52
    [Google Scholar]
  49. Urbach E., Scanlan D. J., Distel D. L., Waterbury J. B., Chisholm S. W. 1998; Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (cyanobacteria. J Mol Evol 46:188–201 [CrossRef]
    [Google Scholar]
  50. van Heeswijk W. C., Hoving S., Molenaar D., Stegeman B., Kahn D., Westerhoff H. V. 1996; An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli . Mol Microbiol 21:133–146 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2405
Loading
/content/journal/micro/10.1099/00221287-148-8-2405
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error