1887

Abstract

The possibility that nonculturable cells of a normally culturable bacterial pathogen may constitute a source or reservoir for infective disease was investigated. In multiple experiments and with careful attention to the statistical limitations of the assays used, serovar Typhimurium cells rendered nonculturable by carbon and nitrogen stress in the presence of chloramphenicol were administered orally and intraperitoneally to over 300 female BALB/c mice. Neither infection nor colonization was detected in these studies, even when active but nonculturable (ABNC) cells, as defined by the Kogure cell elongation assay, were present in the inoculum. Doses of ABNC cells exceeding the oral and intraperitoneal LD values by 35 and 2 orders of magnitude, respectively, were administered. It was concluded that ABNC cells of the salmonella strains used could not be considered potentially infective and that their detection in samples from material being evaluated as a potential source or reservoir of infection by the Kogure test does not specifically represent an infective hazard.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2717
2002-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482717a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2717&mimeType=html&fmt=ahah

References

  1. Barcina I., Arana I., Santorum P., Iriberri J., Egea L. 1995; Direct viable count of Gram-positive and Gram-negative bacteria using ciprofloxacin as inhibitor of cell division. J Microbiol Methods 22:139–150 [CrossRef]
    [Google Scholar]
  2. Barer M. R. 1991; New possibilties for bacterial cytochemistry: light microscopical demonstration of β-galactosidase in unfixed immobilised bacteria. Histochem J 23:529–533 [CrossRef]
    [Google Scholar]
  3. Barer M. R., Harwood C. R. 1999; Bacterial viability and culturability. Adv Microb Physiol 41:94–126
    [Google Scholar]
  4. Barer M. R., Gribbon L. T., Harwood C. R., Nwoguh C. E. 1993; The viable but nonculturable hypothesis and medical bacteriology. Rev Med Microbiol 4:183–191 [CrossRef]
    [Google Scholar]
  5. Barer M. R., Kaprelyants A. S., Weichart D. H., Harwood C. R., Kell D. B. 1998; Microbial stress and culturability: conceptual and operational domains. Microbiology 144:2009–2010 [CrossRef]
    [Google Scholar]
  6. Bloomfield S. F., Stewart G., Dodd C. E. R., Booth I. R., Power E. G. M. 1998; The viable but non-culturable phenomenon explained?. Microbiology 144:1–3 [CrossRef]
    [Google Scholar]
  7. Bogosian G. 1998; Viable but nonculturable, or dead?. ASM News 64:547
    [Google Scholar]
  8. Bogosian G., Morris P. J. L., O’Neil J. P. 1998; A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state. Appl Environ Microbiol 64:1736–1742
    [Google Scholar]
  9. Bogosian G., Aardema N. D., Bourneuf E. V., Morris P. J., O’Neil J. P. 2000; Recovery of hydrogen peroxide-sensitive culturable cells of Vibrio vulnificus gives the appearance of resuscitation from a viable but nonculturable state. J Bacteriol 182:5070–5075 [CrossRef]
    [Google Scholar]
  10. Bovill R. A., Mackey B. M. 1997; Resuscitation of ‘non-culturable’ cells from aged cultures of Campylobacter jejuni . Microbiology 143:1575–1581 [CrossRef]
    [Google Scholar]
  11. Brayton P. R., Tamplin M. L., Huq A., Colwell R. R. 1987; Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent antibody direct viable count. Appl Environ Microbiol 53:2862–2865
    [Google Scholar]
  12. Cappelier J. M., Minet J., Magras C., Colwell R. R., Federighi M. 1999a; Recovery in embryonated eggs of viable but nonculturable Campylobacter jejuni cells and maintainance of ability to adhere to HeLa cells after resuscitation. Appl Environ Microbiol 53:5154–5157
    [Google Scholar]
  13. Cappelier J. M., Magras C., Jouve J. L., Federighi M. 1999b; Recovery of viable but nonculturable Campylobacter jejuni cells in two animal models. Food Microbiol 16:375–383 [CrossRef]
    [Google Scholar]
  14. Caro A., Got P., Lesne J., Binard S., Baleux B. 1999; Viability and virulence of experimentally stressed nonculturable Salmonella typhimurium . Appl Environ Microbiol 65:3229–3232
    [Google Scholar]
  15. Colwell R. R. 1996; Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031 [CrossRef]
    [Google Scholar]
  16. Colwell R. R., Brayton P., Herrington D., Tall B., Huq A., Levine M. M. 1996; Viable but non-culturable Vibrio cholerae O1 revert to a cultivable state in the human intestine. World J Microbiol Biotechnol 12:28–31 [CrossRef]
    [Google Scholar]
  17. Department of Health and Social Security 1969 The Bacteriological Examination of Drinking Water Supplies London: Her Majesty’s Stationery Office;
    [Google Scholar]
  18. Desmonts C., Minet J., Colwell R., Cormier M. 1990; Fluorescent-antibody method useful for detecting viable but nonculturable Salmonella spp. in chlorinated waste-water. Appl Environ Microbiol 56:1448–1452
    [Google Scholar]
  19. Ekweozor C. C., Nwoguh C. E., Barer M. R. 1998; Transient increases in colony counts observed in declining populations of Campylobacter jejuni held at low temperature. FEMS Microbiol Lett 158:267–272 [CrossRef]
    [Google Scholar]
  20. Gaudio P. A., Sethabutr O., Echeverria P., Hoge C. W. 1997; Utility of a polymerase chain reaction diagnostic system in a study of the epidemiology of shigellosis among dysentery patients, family contacts, and well controls living in a shigellosis-endemic area. J Infect Dis 176:1013–1018 [CrossRef]
    [Google Scholar]
  21. Gribbon L. T., Barer M. R. 1995; Oxidative metabolism in nonculturable Helicobacter pylori and Vibrio vulnificus cells studied by substrate-enhanced tetrazolium reduction and digital image processing. Appl Environ Microbiol 61:3379–3384
    [Google Scholar]
  22. Holmstrom K., Tolker-Nielsen T., Molin S. 1999; Physiological states of individual Salmonella typhimurium cells monitored by in situ reverse transcription-PCR. J Bacteriol 181:1733–1738
    [Google Scholar]
  23. Hormaeche C. E. 1979; Natural resistance to Salmonella typhimurium in different mouse strains. Immunology 37:311–318
    [Google Scholar]
  24. Hormaeche C. E., Kahn C. M. A., Mastroeni P., Villarreal B., Dougan G., Roberts M., Chatfield S. N. 1995; Salmonella vaccines: mechanisms of immunity and their use as carriers of recombinant antigens. In Molecular and Clinical Aspects of Bacterial Vaccine Development pp 119–154 Edited by Ala’Aldeen D. A. A., Hormaeche C. E. London: Wiley;
    [Google Scholar]
  25. Jones D. M., Sutcliffe E. M., Curry A. 1991; Recovery of viable but non-culturable Campylobacter jejuni . J Gen Microbiol 137:2477–2482 [CrossRef]
    [Google Scholar]
  26. Joux F., Lebaron P., Troussellier M. 1997; Succession of cellular states in a Salmonella typhimurium population during starvation in artificial seawater microcosms. FEMS Microbiol Ecol 22:65–76 [CrossRef]
    [Google Scholar]
  27. Kaprelyants A. S., Kell D. B. 1994; Dormancy in stationary-phase cultures of Micrococcus luteus : flow cytometric analysis of starvation and resuscitation. Appl Environ Microbiol 59:3187–3196
    [Google Scholar]
  28. Kell D. B., Kaprelyants A. S., Weichart D., Harwood C. R., Barer M. R. 1998; Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Leeuwenhoek 73:169–187 [CrossRef]
    [Google Scholar]
  29. Koch A. L. 1994; Growth measurement. In Methods for General and Molecular Bacteriology pp 248–277 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Kogure K., Simidu U., Taga N. 1979; A tentative direct microscopic method for counting live marine bacteria. Can J Microbiol 25:415–420 [CrossRef]
    [Google Scholar]
  31. Kolling G. L., Matthews K. R. 2001; Examination of recovery in vitro and in vivo of nonculturable Escherichia coli O157: H7. Appl Environ Microbiol 67:3928–3933 [CrossRef]
    [Google Scholar]
  32. Lisle J. T., Pyle B. H., McFeters G. A. 1999; The use of multiple indices of physiological activity to assess viability in chlorine disinfected Escherichia coli O157: H7. Lett Appl Microbiol 29:42–47 [CrossRef]
    [Google Scholar]
  33. Maskell D. J., Hormaeche C. E., Harrington K. A., Joysey H. S., Liew F. Y. 1987a; The initial suppression of bacterial growth in a salmonella infection is mediated by a localized rather than a systemic response. Microb Pathog 2:295–305 [CrossRef]
    [Google Scholar]
  34. Maskell D. J., Sweeney K. J., O’Callaghan D., Hormaeche C. E., Liew F. Y., Dougan G. 1987b; Salmonella typhimurium aroA mutants as carriers of the Escherichia coli heat-labile enterotoxin B subunit to the murine secretory and systemic immune sytems. Microb Pathog 2:211–221 [CrossRef]
    [Google Scholar]
  35. Nilsson L., Oliver J. D., Kjelleberg S. 1991; Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J Bacteriol 173:5054–5059
    [Google Scholar]
  36. Nwoguh C. E., Harwood C. R., Barer M. R. 1995; Detection of induced β-galactosidase activity in individual non-culturable cells of pathogenic bacteria by cytological assay. Mol Microbiol 17:545–554 [CrossRef]
    [Google Scholar]
  37. Oliver J. D. 1999; Viable but nonculturable – alive?. ASM News 65:185–186
    [Google Scholar]
  38. Oliver J. D., Bockian R. 1995; In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus . Appl Environ Microbiol 61:2620–2623
    [Google Scholar]
  39. Palmer S. R., Gully P. R., White J. M., Pearson A. D., Suckling W. G., Jones D. M., Rawes J. C. L., Penner J. L. 1983; Water-borne outbreak of campylobacter gastroenteritis. Lancet 1:287–290
    [Google Scholar]
  40. Pearson A. D., Greenwood M., Healing T. D., Rollins D., Shahamat M., Donaldson J., Colwell R. R. 1993; Colonization of broiler chickens by waterborne Campylobacter jejuni . Appl Environ Microbiol 59:987–996
    [Google Scholar]
  41. Popper K. R. 1972 Conjectures and Refutations: the Growth of Scientific Knowledge, 4th edn. London: Routledge & Kegan Paul;
    [Google Scholar]
  42. Ravel J., Knight I. T., Monahan C. E., Hill R. T., Colwell R. R. 1995; Temperature-induced recovery of Vibrio cholerae from the viable but nonculturable state – growth or resuscitation. Microbiology 141:377–383 [CrossRef]
    [Google Scholar]
  43. Rollins D. M., Colwell R. R. 1986; Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol 52:531–538
    [Google Scholar]
  44. Roszak D. B., Colwell R. R. 1987; Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379
    [Google Scholar]
  45. Roszak D. B., Grimes D. J., Colwell R. R. 1984; Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can J Microbiol 30:334–338 [CrossRef]
    [Google Scholar]
  46. Saha S. K., Saha S., Sanyal S. C. 1991; Recovery of injured Campylobacter jejuni cells after animal passage. Appl Environ Microbiol 57:3388–3389
    [Google Scholar]
  47. Shahamat M., Mai U., Paszkokolva C., Kessel M., Colwell R. R. 1993; Use of autoradiography to assess viability of Helicobacter pylori in water. Appl Environ Microbiol 59:1231–1235
    [Google Scholar]
  48. Sheridan G. E., Masters C. I., Shallcross J. A., MacKey B. M. 1998; Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microbiol 64:1313–1318
    [Google Scholar]
  49. Smith R. J., Kehoe S., McGuigan K. G., Barer M. R. 2000; Effects of simulated solar disinfection of water on infectivity of Salmonella typhimurium . Lett Appl Microbiol 31:284–288 [CrossRef]
    [Google Scholar]
  50. Stern N. J., Jones D. M., Wesley I. V., Rollins D. M. 1994; Colonization of chicks by noonculturable Camplyobac ter spp. Lett Appl Microbiol 18:333–336 [CrossRef]
    [Google Scholar]
  51. Votyakova T. V., Kaprelyants A. S., Kell D. B. 1994; Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase: the population effect. Appl Environ Microbiol 60:3284–3291
    [Google Scholar]
  52. Whiteley A. S., O’Donnell A. G., Macnaughton S. J., Barer M. R. 1996; Cytochemical colocalization and quantitation of phenotypic and genotypic characteristics in individual bacterial cells. Appl Environ Microbiol 62:1873–1879
    [Google Scholar]
  53. Whiteley A. S., Grewal R., Hunt A., Barer M. R. 1998; Determining biochemical and physiological phenotypes of bacteria by cytological assay. In Digital Image Analysis of Microbes pp 281–308 Edited by Wilkinson M. H. F., Schut F. New York: Wiley;
    [Google Scholar]
  54. Whitesides M. D., Oliver J. D. 1997; Resuscitation of Vibrio vulnificus from the viable but nonculturable state. Appl Environ Microbiol 63:1002–1005
    [Google Scholar]
  55. Williams D. A. 1986; Interval estimation of the median lethal dose. Biometrics 42:641–645 [CrossRef]
    [Google Scholar]
  56. Xu H. S., Roberts N., Singleton F. L., Attwell R. W., Grimes D. J., Colwell R. R. 1982; Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-9-2717
Loading
/content/journal/micro/10.1099/00221287-148-9-2717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error