1887

Abstract

SUMMARY: Poly--hy droxybutyrate has been previously shown to be a major component of bacterial ‘lipid’ granules. In the present study, the conditions under which it was formed and degraded by and were studied in washed suspensions. Suitable substrates for synthesis were glucose, pyruvate or -hy droxybutyrate. Acetate, although alone unable to induce synthesis, greatly enhanced formation in presence of these substrates. Under optimal conditions, suspensions synthesized up to eight times their original content of poly--hydroxy- butyrate in 4 hr. Formation was inhibited by high concentrations of oxygen, although no synthesis occurred anerobically in nitrogen. The optimal concentration of oxygen was about 5% only was able to synthesize poly--hydroxybutyrate in an atmosphere of hydrogen. In the absence of an external carbon and energy source, degradation occurred rapidly aerobically, to carbon dioxide and water, and more slowly anaerobically to -hydroxybutyrate and acetoacetate. The evidence that poly--hydroxybutyrate is a reserve carbon and energy source is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-19-1-210
1958-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/19/1/mic-19-1-210.html?itemId=/content/journal/micro/10.1099/00221287-19-1-210&mimeType=html&fmt=ahah

References

  1. Cavallini D., Frontali N. 1954; Quantitative determination of keto-acids by paper partition chromatography. Biochim. biophys. Acta 13:439
    [Google Scholar]
  2. Dagley S., Johnson A. R. 1953; The relation between lipid and polysaccharide contents of Bact. coli. Biochim. biophys. Acta 11:158
    [Google Scholar]
  3. Duncan R. E. B., Porteous J. W. 1953; The identification and determination of the lower straight-chain fatty acids by paper partition chromatography. Analyst 78:641
    [Google Scholar]
  4. Hoberman H. D., Rittenberg D. 1943; Biological catalysis of the exchange reaction between water and hydrogen. J. biol. Chem 147:211
    [Google Scholar]
  5. Knaysi G. 1945; On the origin and fate of the fatty inclusions in a strain of Bacillus cereus. Science 102:424
    [Google Scholar]
  6. Lemoigne M. 1923; Production d’acide β-oxybutyrique par certaines bacteries du groupe du B. subtilis. C.R. Acad. Sci., Paris 176:1761
    [Google Scholar]
  7. Lemoigne M. 1925; Études sur l’autolyse microbienne. Acidification par formation d’acide β-oxybutyrique. Ann. Inst. Pasteur 39:144
    [Google Scholar]
  8. Lemoigne M. 1927; Études sur l’autolyse microbienne. Origine de l’acide β-oxybutyrique formé par autolyse. Ann. Inst. Pasteur 41:148
    [Google Scholar]
  9. Lemoigne M., Delaporte B., Croson M. 1944; Contribution à l’étude botan- ique et biochimique des bacteries du genre Bacillus. 2. Yaleur du test des lipides β-hydroxybutyriques pour la characterisation des espeees. Ann. Inst. Pasteur 70:224
    [Google Scholar]
  10. Lemoigne M., Grelet N., Croson M. 1950; Sur l’origine des lipides β-hydroxybutyriques formes par processus microbien. Bull. Soc. Chim. biol., Paris 32:719
    [Google Scholar]
  11. Lemoigne M., Grelet N., Croson M., Le Treis M. 1945; Formation de lipide β-hydroxybutyrique aux dépens du glucose par le Bacillus megaterium. Données quantitatives. Bull. Soc. Chim. biol., Paris 27:90
    [Google Scholar]
  12. Lemoigne M., Péaud-Lenoäl C., Croson M. 1949; Déshydrogénation de l’acide β-hydroxybutyrique par B. megaterium. Ann. Inst., Pasteur 77:211
    [Google Scholar]
  13. Lemoigne M., Péaud-Lenoél C., Croson M. 1950; Assimilation des acides acetylacétique et β-hydroxybutyrique par B. megaterium. Ann. Inst. Pasteur 78:705
    [Google Scholar]
  14. Macrae R. M., Wilkinson J. F. 1958; The influence of cultural conditions on poly-β-hydroxybutyrate synthesis in Bacillus megaterium. Proc. R. phys. Soc. Edinb in the Press
    [Google Scholar]
  15. Northrop J. H. 1951; Growth and phage production of lysogenic B. megaterium. J. gen. Physiol 34:715
    [Google Scholar]
  16. Stewart J. M., Cordts H. P. 1952; Oxidative ring cleavage reactions of propylene sulfide. J. Amer. chem. Soc 74:5880
    [Google Scholar]
  17. Thin C., Robertson A. 1952; The estimation of acetone bodies. Biochem. J 51:218
    [Google Scholar]
  18. Tinelli R. 1955a; Étude de la biochimie de la sporulation chez Bacillus megaterium. II. Modifications biochimique et echanges gazeux accompagnant la sporulation provoquée par carence de glucose. Ann. Inst. Pasteur 88:864
    [Google Scholar]
  19. Tinelli R. 1955b; Étude de la biochimie de la sporulation chez Bacillus mega-terium. III. Étude du comportement d’une souche de B. megaterium asporo- gène mise dans les conditions de sporulation. Ann. Inst. Pasteur 88:642
    [Google Scholar]
  20. Weibull C. 1953; Characterisation of the protoplasmic constituents of Bacillus megaterium. J. Bact 66:696
    [Google Scholar]
  21. Williamson D. H., Wilkinson J. F. 1958; The isolation and estimation of the poly-β-hydroxybutyrate inclusions of Bacillus species. J. gen. Microbiol 19:198
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-19-1-210
Loading
/content/journal/micro/10.1099/00221287-19-1-210
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error