1887

Abstract

SUMMARY

has been studied during batch cultivation at pH 7 and 35° in a glucose + casein hydrolysate + vitamins and salts medium kept (i) anaerobic ( , −400 to −370 mV), (ii) aerated ( , −50 to o mV; dissolved 0, < 1 ), and (iii) aerobic ( , + 100 mV; dissolved O, 40 to 50 ). Shortterm (4 to 6 h.) exposure to oxygen was not lethal, though at sufficiently high concentrations oxygen decreased the rate of glucose consumption, halted growth and prevented net synthesis of DNA, RNA and protein. Under these aerobic conditions the organism was drained of‘reducing power’ and starved of energy - as evidenced by cessation of butyrate formation (but not of acetate production), and by a marked fall in intracellular ATP. These consequences of oxygenation were swiftly reversed when anaerobic conditions were re-established; ‘ normal ’ growth and glucose metabolism then resumed. There was no evidence of H0 production, nor could the effects of oxygenation be attributed merely to its elevation of the culture . Thus oxygen (40 ) inhibited growth even in a medium poised with dithiothreitol at − 50 mV, while growth and glucose metabolism continued unchecked when the of an anaerobic culture was maintained at + 370 mV by addition of potassium ferricyanide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-68-3-307
1971-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/68/3/mic-68-3-307.html?itemId=/content/journal/micro/10.1099/00221287-68-3-307&mimeType=html&fmt=ahah

References

  1. Aubel E., Perdigon E. 1940; Étude de l’action de l’oxygène sur la production de corps en C4 et en C2 par un anaërobie strict. Comptes rendus hebdomadaires des séances de l’Academie des sciences 211:439–441
    [Google Scholar]
  2. Aubel E., Perdigon E. 1945; Action de l’oxygènesur les anaërobies stricts. Étude de l’action de L’oxygènesur la production de corps en C2 et en C4 par Clostridium saccharobutyricum. Revue canadienne de biologie 4:498–501
    [Google Scholar]
  3. Bucher T., Czok R., Lamprecht W., Larzko E. 1965; Pyruvate. In Methods of Enzymatic Analysis pp. 253–262 Bergmeyer H. U. Edited by New York and London: Academic Press;
    [Google Scholar]
  4. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical Journal 62:315–323
    [Google Scholar]
  5. Crawford R. J., Raap R. 1963; The synthesis and reactions of N,N′-dicarbalkoxy-N,N′-dialkoxy-hydrazines and some observations on carbalkoxylium ions. Journal of Organic Chemistry 28:2419–2424
    [Google Scholar]
  6. Forrest W. W. 1969; Energetic aspects of microbial growth. Symposia of the Society for General Microbiology 19:65–86
    [Google Scholar]
  7. Forrest W. W., Walker D. J. 1965; Synthesis of reserve materials for endogenous metabolism in Streptococcus faecalis. Journal of Bacteriology 89:1448–1452
    [Google Scholar]
  8. Gornall A. G., Bardawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry 177:751–766
    [Google Scholar]
  9. Grunberg M. 1948; Action de l’oxygènesur les anaërobies stricts. Annales de l’Institut Pasteur 74:216–232
    [Google Scholar]
  10. Grunberg-Manago M., Szulmajster J., Delavier C. 1952; Formation et decomposition de l’eau oxygenée par les bacteries anaërobies. Annales de l’Institut Pasteur 83:102–117
    [Google Scholar]
  11. Hobson P. N., Nasr H. 1951; An amylopectin-type polysaccharide synthesised from sucrose by Clostridium butyricum. Journal of the Chemical Society1855–1857
    [Google Scholar]
  12. Mallin A. F., Seeley H. W. 1958; Some relations of hydrogen peroxide to oxygen consumption by Clostridium perfringens. Archives of Biochemistry and Biophysics 73:306–314
    [Google Scholar]
  13. Morris J. G. 1970; The biochemical basis of oxygen sensitivity. Journal of General Microbiology 60:iii
    [Google Scholar]
  14. Morris J. G., O’Brien R. W. 1971; Oxygen and clostridia: a review. In Spore Research 1971 pp. 1–38 Barker A. N., Gould G. W., Wolf J. Edited by New York and London: Academic Press;
    [Google Scholar]
  15. Pasteur L. 1861; Animalcules infusoires vivant sans gaz oxygène libre et determinant les fermentations. Comptes rendus hebdomadaires des séances de l’Academie des sciences 52:344–347
    [Google Scholar]
  16. Schneider W. C. 1957; Determination of nucleic acid in tissues by pentose assay. In Methods in Enzymology 3 pp. 680–684 Colowick S. P., Kaplan N. O. Edited by New York and London: Academic Press;
    [Google Scholar]
  17. Stanley P. E., Williams S. G. 1969; Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Analytical Biochemistry 29:381–392
    [Google Scholar]
  18. Sunderland D. W., Merrett M. J. 1967; Respiration rate, adenosine diphosphate and triphosphate concentration of leaves showing necrotic local lesions following infection by tobacco mosaic virus. Physiologia Plantarum 20:368–372
    [Google Scholar]
  19. Teller J. D. 1956; Direct, quantitative, colorimetric determination of serum or plasma glucose. Abstracts of Papers, 130th Meeting American Chemical Society p. 69c
    [Google Scholar]
  20. Wimpenny J. W. T. 1969; Oxygen and carbon dioxide as regulators of microbial growth and metabolism. Symposia of the Society for General Microbiology 19:161–197
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-68-3-307
Loading
/content/journal/micro/10.1099/00221287-68-3-307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error