1887

Abstract

Summary: The value of the adenylate energy charge, i.e. ([ATP] + [ADP])/([ATP] + [ADP] + [AMP]), during batch culture of remained relatively constant during the exponential and early stationary phases of the growth cycle. During exponential growth the intracellular ATP content remained constant, the amount of ATP in the culture increasing proportionally with growth; these conditions were unaltered during growth in the presence of added cyclic AMP. On cessation of growth, significant variation in bacterial ATP content was observed depending on whether growth of the cultures terminated due to exhaustion of carbon or nitrogen from the medium, and on the presence or absence of added cyclic AMP.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-98-1-95
1977-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/98/1/mic-98-1-95.html?itemId=/content/journal/micro/10.1099/00221287-98-1-95&mimeType=html&fmt=ahah

References

  1. Atkinson D. E. 1968; The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry, New York 7:4030–4034
    [Google Scholar]
  2. Atkinson D. E., Walton G. M. 1967; Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. Journal of Biological Chemistry 242:3239–3241
    [Google Scholar]
  3. Bächi B., Ettlinger L. 1973; Influence of glucose on adenine nucleotide levels and energy charge in Acetobacter aceti. Archiv für Mikrobiologie 93:155–164
    [Google Scholar]
  4. Bagnara A. A., Finch L. R. 1973; Relationships between intracellular contents of nucleotides and 5-phosphoribosyl 1-pyrophosphate in Escherichia coli. European Journal of Biochemistry 36:422–427
    [Google Scholar]
  5. Ball W. J.Jr Atkinson D. E. 1975; Adenylate energy charge in Saccharomyces cerevisiae during starvation. Journal of Bacteriology 121:975–982
    [Google Scholar]
  6. Baumann P., Baumann L., Mandel M. 1971; Taxonomy of marine bacteria: the genus Beneckea. Journal of Bacteriology 107:268–294
    [Google Scholar]
  7. Broman R. L., Dobrogosz W. J., White D. C. 1974; Stimulation of cytochrome synthesis in Escherichia coli by cyclic AMP. Archives of Biochemistry and Biophysics 162:595–601
    [Google Scholar]
  8. Chapman A. G., Atkinson D. E. 1973; Stabilization of adenylate energy charge by the adenylate deaminase reaction. Journal of Biological Chemistry 248:8309–8312
    [Google Scholar]
  9. Chapman A. G., Fall L., Atkinson D. E. 1971; Adenylate energy charge in Escherichia coli during growth and starvation. Journal of Bacteriology 108:1072–1086
    [Google Scholar]
  10. Chulavatnatol M., Atkinson D. E. 1973a; Phosphoenolpyruvate synthetase from Escherichia coli. Effects of adenylate energy charge and modifier concentrations. Journal of Biological Chemistry 248:2712–2715
    [Google Scholar]
  11. Chulavatnatol M., Atkinson D. E. 1973b; Kinetic competition in vitro between phosphoenolpyruvate synthetase and the pyruvate dehydrogenase complex from Escherichia coli. Journal of Biological Chemistry 248:2716–2721
    [Google Scholar]
  12. Decker K., Pfitzer S. 1972; Determination of steady-state concentrations of adenine nucleotides in growing C.kluyveri cells by biosynthetic labeling. Analytical Biochemistry 50:529–539
    [Google Scholar]
  13. Dietzler D. N., Lais C. J., Leckie M. P. 1974a; Simultaneous increases of the adenylate energy charge and the rate of glycogen synthesis in nitrogen-starved Escherichia coli W4597(K). Archives of Biochemistry and Biophysics 160:14–25
    [Google Scholar]
  14. Dietzler D. N., Lais C. J., Magnani J. L., Leckie M. P. 1974b; Maintenance of the energy charge in the presence of large decreases in the total adenylate pool of Escherichia coli and concurrent changes in glucose-6-P, fructose-P2 and glycogen synthesis. Biochemical and Biophysical Research Communications 60:875–881
    [Google Scholar]
  15. Eagon R. G. 1962; Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. Journal of Bacteriology 83:736–737
    [Google Scholar]
  16. Eagon R. G., Cho H. W. 1965; Major products of glucose dissimilation by Pseudomonas natriegens. Journal of Bacteriology 89:1209–1211
    [Google Scholar]
  17. Eigener U. 1975; Adenine nucleotide pool variations in intact Nitrobacter winogradskyi cells. Archives of Microbiology 102:233–240
    [Google Scholar]
  18. Eigener U., Bock E. 1975; Study of the regulation of oxidation and CO2 assimilation in intact Nitrobacter winogradskyi cells. Archives of Microbiology 102:241–246
    [Google Scholar]
  19. Ezzell J. W., Dobrogosz W. J. 1975; Altered hexose transport and salt sensitivity in a cyclic adenosine 3´,5´-monophosphate-deficient Escherichia coli. Journal of Bacteriology 124:815–824
    [Google Scholar]
  20. Fanica-Gaignier M., Clement-Metral J., Kamen M. D. 1971; Adenine nucleotide levels and photopigment synthesis in a growing photosynthetic bacterium. Biochimica et biophysica acta 226:135–143
    [Google Scholar]
  21. Franzen J. S., Binkley S. B. 1961; Comparison of acid-soluble nucleotides in Escherichia coli at different growth rates. Journal of Biological Chemistry 236:515–519
    [Google Scholar]
  22. Gadkari D., Stolp H. 1975; Energy metabolism of Bdellovibrio bacteriovorus. I. Energy production, ATP pool, energy charge. Archives of Microbiology 102:179–185
    [Google Scholar]
  23. Hanson C. W., Dworkin M. 1974; Intracellular and extracellular nucleotides and related compounds during the development of Myxococcus xanthus. Journal of Bacteriology 118:486–496
    [Google Scholar]
  24. Harrison D. E.F., Maitra P. K. 1969; Control of respiration and metabolism in growing Klebsiella aerogenes. The role of adenine nucleotides. Biochemical Journal 112:647–656
    [Google Scholar]
  25. Hempfling W. P. 1970; Repression of oxidative phosphorylation in Escherichia coli B by growth in glucose and other carbohydrates. Biochemical and Biophysical Research Communications 41:9–15
    [Google Scholar]
  26. Hempfling W. P., Beeman D. K. 1971; Release of glucose repression of oxidative phosphorylation in Escherichia coli B by cyclic adenosine 3´,5´-monophosphate. Biochemical and Biophysical Research Communications 45:924–930
    [Google Scholar]
  27. Hempfling W. P., Mainzer S. E. 1975; Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture. Journal of Bacteriology 123:1076–1087
    [Google Scholar]
  28. Hobson P. N., Summers R. 1972; ATP pool and growth yield in Selenomonas ruminantium. Journal of General Microbiology 70:351–360
    [Google Scholar]
  29. Holms W. H., Bennett P. M. 1971; Regulation of isocitrate dehydrogenase activity in Escherichia coli on adaptation to acetate. Journal of General Microbiology 65:57–68
    [Google Scholar]
  30. Holms W. H., Hamilton I. D., Robertson A. G. 1972; The rate of turnover of the adenosine triphosphate pool of Escherichia coli growing aerobically in simple defined media. Archiv für Mikrobiologie 83:95–109
    [Google Scholar]
  31. Hutchison K. W., Hanson R. S. 1974; Adenine nucleotide changes associated with the initiation of sporulation in Bacillus subtilis. Journal of Bacteriology 119:70–75
    [Google Scholar]
  32. Klungsøyr L., Hagemen J. H., Fall L., Atkinson D. E. 1968; Interaction between energy charge and product feedback in the regulation of biosynthetic enzymes. Aspartokinase, phosphoribosyladeno- sine triphosphate synthetase and phosphoribosyl pyrophosphate synthetase. Biochemistry, New York 7:4035–4040
    [Google Scholar]
  33. Liao C.-L., Atkinson D. E. 1971; Regulation at the phosphoenolpyruvate branchpoint in Azotobacter vinelandii: pyruvate kinase. Journal of Bacteriology 106:37–44
    [Google Scholar]
  34. Lowry O. H., Carter J., Ward J. B., Glaser L. 1971; The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli. Journal of Biological Chemistry 246:6511–6521
    [Google Scholar]
  35. Lundin A., Thore A. 1975; Comparison of methods for extraction of bacterial adenine nucleotides determined by firefly assay. Applied Microbiology 30:713–721
    [Google Scholar]
  36. Miller A. L., Atkinson D. E. 1972; Response of yeast pyruvate carboxylase to the adenylate energy charge and other regulatory parameters. Archives of Biochemistry and Biophysics 152:531–538
    [Google Scholar]
  37. Miović M. L., Gibson J. 1971; Nucleotide pools in growing Chromatium strain D. Journal of Bacteriology 108:954–956
    [Google Scholar]
  38. Miović M. L., Gibson J. 1973; Nucleotide pools and adenylate energy charge in balanced and unbalanced growth of Chromatium. Journal of Bacteriology 114:86–95
    [Google Scholar]
  39. Montague M. D., Dawes E. A. 1974; The survival of Peptococcus prévotii in relation to the adenylate energy charge. Journal of General Microbiology 80:291–299
    [Google Scholar]
  40. Neidhardt F. C., Fraenkel D. G. 1961; Metabolic regulation of RNA synthesis in bacteria. Cold Spring Harbor Symposia on Quantitative Biology 26:63–74
    [Google Scholar]
  41. Neijssel O. M., Tempest D. W. 1976; Bioenergetic aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture. Archives of Microbiology 107:215–221
    [Google Scholar]
  42. Patrick J. M., Dobrogosz W. J. 1973; The effect of cyclic AMP on anaerobic growth of Escherichia coli. Biochemical and Biophysical Research Communications 54:555–561
    [Google Scholar]
  43. Purich D. L., Fromm H. J. 1972; Studies on factors influencing enzyme responses to adenylate energy charge. Journal of Biological Chemistry 247:249–255
    [Google Scholar]
  44. Purich D. L., Fromm H. J. 1973; Additional factors influencing enzyme responses to the adenylate energy charge. Journal of Biological Chemistry 248:461–466
    [Google Scholar]
  45. Rickenberg H. V. 1974; Cyclic AMP in prokaryotes. Annual Review of Microbiology 28:353–369
    [Google Scholar]
  46. Schmidt G. L., Kamen M. D. 1971; Control of chlorophyll synthesis in Chromatium vinosum. Archiv für Mikrobiologie 76:51–64
    [Google Scholar]
  47. Schramm V. L., Lazorik F. C. 1975; The pathway of adenylate catabolism in Azotobacter vinelandii. Evidence for adenosine monophosphate nucleosidase as the regulatory enzyme. Journal of Biological Chemistry 250:1801–1808
    [Google Scholar]
  48. Schramm V. L., Leung H. 1973; Regulation of adenosine monophosphate levels as a function of adenosine triphosphate and inorganic phosphate. A proposed metabolic role for adenosine monophosphate nucleosidase from Azotobacter vinelandii. Journal of Biological Chemistry 248:8313–8315
    [Google Scholar]
  49. Setlow P., Kornberg A. 1970; Biochemical studies of bacterial sporulation and germination. XXII. Energy metabolism in early stages of germination of Bacillus megaterium spores. Journal of Biological Chemistry 245:3637–3644
    [Google Scholar]
  50. Shen L. C., Atkinson D. E. 1970; Regulation of adenosine dephosphate glucose synthase from Escherichia coli. Interactions of adenylate energy charge and modifier concentrations. Journal of Biological Chemistry 245:3996–4000
    [Google Scholar]
  51. Shen L. C., Fall L., Walton G. M., Atkinson D. E. 1968; Interaction between energy charge and metabolite modulation in the regulation of enzymes of amphibolic sequences. Phosphofructokinase and pyruvate dehydrogenase. Biochemistry, New York 7:4041–4045
    [Google Scholar]
  52. Slayman C. L. 1973; Adenine nucleotide levels in Neurospora, as influenced by conditions of growth and by metabolic inhibitors. Journal of Bacteriology 114:752–766
    [Google Scholar]
  53. Smith R. C., Maaløe O. 1964; Effect of growth rate on the acid-soluble nucleotide composition of Salmonella typhimurium. Biochimica et biophysica acta 86:229–234
    [Google Scholar]
  54. Stouthamer A. H., Bettenhaussen C. 1973; Utilization of energy for growth and maintenance in continuous and batch cultures of micro-organisms. A re-evaluation of the method for the determination of ATP production by measuring molar growth yields. Biochimica et biophysica acta 301:53–70
    [Google Scholar]
  55. Swedes J. S., Sedo R. J., Atkinson D. E. 1975; Relation of growth and protein synthesis to the adenylate energy charge in an adenine-requiring mutant of Escherichia coli. Journal of Biological Chemistry 250:6930–6938
    [Google Scholar]
  56. Takahashi Y. 1975; Effect of glucose and cyclic adenosine 3´, 5´-monophosphate on the synthesis of succinate dehydrogenase and isocitrate lyase in Escherichia coli. Journal of Biochemistry 78:1097–1100
    [Google Scholar]
  57. Thompson F. M., Atkinson D. E. 1971; Response of nucleoside diphosphate kinase to the adenylate energy charge. Biochemical and Biophysical Research Communications 45:1581–1585
    [Google Scholar]
  58. Winkler H. H. 1976; Rickettsial permeability. An ADP-ATP transport system. Journal of Biological Chemistry 251:389–396
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-98-1-95
Loading
/content/journal/micro/10.1099/00221287-98-1-95
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error