1887

Abstract

Polymerase chain reaction (PCR) was used to generate DNA encoding a 60 kDa stress protein of using primers complementary to sequences at the 5′ and 3′ ends of 60 kDa stress protein genes (encoding the ‘65 kDa antigens’) of and The predicted PCR product of 1.8kb contained the entire coding sequence of an 60kDa stress protein, with non-coding regions of 124bp and 1bp at the 5′ and 3′ ends, respectively. DNA encoding the entire ORF for the 60kDa stress protein, as well as thrombin and Factor Xa proteolytic cleavage sites, was ligated into the bacterial expression vector pGEX-2T and used to transform strain JM83. Transformed bacteria, induced by IPTG, expressed an 85 kDa fusion protein comprising glutathione -transferase (GST) and 60 kDa stress protein. This fusion protein was purified by adsorption to glutathione-agarose beads and shown to cross-react in Western blot analysis with an anti-mycobacterial 60 kDa stress protein monoclonal antibody. Recombinant 60 kDa stress protein was liberated from GST by proteolytic cleavage with either thrombin or Factor Xa enzyme. Authenticity of liberated recombinant stress protein was confirmed by N-terminal amino acid sequencing.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-12-3329
1994-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/12/mic-140-12-3329.html?itemId=/content/journal/micro/10.1099/13500872-140-12-3329&mimeType=html&fmt=ahah

References

  1. Buergelt C.D., Hall G., McKentee K., Duncan J.R. Pathological evaluation of paratuberculosis in naturally infected cattle. Vet Patbol 1978; 15:196–207
    [Google Scholar]
  2. Chiodini R.J. Abolish Mycobacterium paratuberculosis Strain 18. J Clin Microbiol 1993; 31:1956–1957
    [Google Scholar]
  3. Chiodini R.J., Van Kruinigen H.J., Merkal R.S. Ruminant paratuberculosis (Johne’s disease): current status and future prospects. Cornell Vet 1984; 74:218–262
    [Google Scholar]
  4. Cohen I.R. Autoimmunity to chaperonins in the pathogenesis of arthritis and diabetes. Annu Rev Immunol 1991; 9:567–589
    [Google Scholar]
  5. Fiskerstrand C.E., Roy D.J., Green I., Sargan D.R. Cloning, expression and characterisation of ovine interleukins-1α and β. Cytokine 1992; 4:418–428
    [Google Scholar]
  6. Gillis T.P., Buchanan T.M. Production and partial characterisation of monoclonal antibodies to M leprae. Infect Immun 1982; 37:354–361
    [Google Scholar]
  7. Gilmour J.E.M., Senior J.M., Burns N.R., Esnouf M.P., Gull K., Kingsman S.M., Kingsman A.J., Adam S.E. A novel method for the purification of HIV-1 p24 protein from hybrid Ty virus-like particles (Ty-VLPs). AIDS 1989; 3:717–723
    [Google Scholar]
  8. Green E.P., Tizard M.L.V., Moss M.T., Thompson J., Winterbourne D.J., McFadden J.J., Hermon-Taylor J. Sequence and characteristics of 1S900, an insertion element identified in a human Crohn’s-disease isolate of Mycobacterium paratuberculosis. Nucl Acids Res 1989; 17:9063–9073
    [Google Scholar]
  9. Hance A.J., Grandchamp B., Levyfrebault V., Lecossier D., Rauzier J., Bocart D., Gicquel B. Detection and identification of mycobacteria by amplification of mycobacterial DNA. Mol Microbiol 1989; 3:843–849
    [Google Scholar]
  10. Hemmingsen S.M., Woolford C., Vandervies S.M., Tilly K., Dennis D.T., Georgopoulos C.P., Hendrix R.W., Ellis R.J. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 1988; 333:330–334
    [Google Scholar]
  11. Hunt P., Colston A., Bujdoso R. Nomenclature of Mycobacterial stress proteins (65 kDa antigens) and other members of the hsp6O family. Trends Microbiol 1994; 2:298
    [Google Scholar]
  12. Ikemura T. Codon usage and transfer-RNA content in unicellular and multicellular organisms. Mol Biol Evol 1985; 2:13–34
    [Google Scholar]
  13. Janeway C.A., Jones B., Hayday A. Specificity and function of T cells bearing yd receptors. Immunol Today 1988; 9:73–76
    [Google Scholar]
  14. Jindal S., Dudani A.K., Singh B., Harley C.B., Gupta R.S. Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol 1989; 9:2279–2283
    [Google Scholar]
  15. Kong T.H., Coates A.R.M., Butcher P.D., Hickman C.J., Shinnick T.M. Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sei USA 1993; 90:2608–2612
    [Google Scholar]
  16. Kunze Z.M., Portaeis F., McFadden J.J. Biologically distinct subtypes of Mycobacterium avium differ in possession of insertion sequence IS901. J Clin M-icrobiol 1992; 30:2366–2372
    [Google Scholar]
  17. Kyhse-Anderson J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Meth 1984; 10:203–209
    [Google Scholar]
  18. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  19. Laura R., Robinson D.J., Bing D.H. p-(Amidinophenyl)methanesulphonyl fluoride, an irreversible inhibitor of serine proteases. Biochemistry 1980; 19:4859–4864
    [Google Scholar]
  20. Luis A.M., Alconada A., Cuezva J.M. The alpharegulatory subunit of the mitochondrial Fl-ATPase complex is a heat-shock protein-identification of two highly conserved amino acid sequences among the α subunits and molecular chaperones. J Biol Chem 1990; 265:7713–7716
    [Google Scholar]
  21. Mackay C.R., Maddox J.F., Brandon M.R. Three distinct subpopulations of sheep T lymphocytes. Eur J Immunol 1986; 16:19–25
    [Google Scholar]
  22. Magnusson S., Petersen T.E., Sottrup-Jensen L., Cleays H. In Proteases and Biological Control 1975 Edited by Reich E., Rifkin D., Shaw E. Cold Spring Harbor, NY: Col; pp 123–149
    [Google Scholar]
  23. McFadden J.J., Butcher P.D., Thompson J., Chiodini R., Hermon-Taylor J. The use of DNA probes identifying restriction-length polymorphisms to examine the Mycobacterium avium complex. Mol Microbiol 1987; 1:283–291
    [Google Scholar]
  24. Mehra V., Sweetser D., Young R.A. Efficient mapping of protein antigenic determinants. Proc Natl Acad Sei USA 1986; 83:7013–7017
    [Google Scholar]
  25. Moss M.T., Green E.P., Tizard M.L., Malik Z.P., Hermon-Taylor J. Specific detection of Mycobacterium paratuberculosis by DNA hybridization with a fragment of the insertion element IS900. Gut 1991; 32:395–398
    [Google Scholar]
  26. Nagai K., Thogersen H.C. Generation of β-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. Nature 1984; 309:810–812
    [Google Scholar]
  27. Pluzek K.J., Ramlau J. Alkaline phosphatase labelled reagents. In Handbook of Immunoblotting of Proteins, Technical Descriptions 1988 Edited by Bjerrum O.J., Heegaard N.H.H. Boca Raton, FL: CRC Press; 1 pp 177–188
    [Google Scholar]
  28. Rinke De Wit T.F., Bekelie S., Osland A., Miko T.L., Hermans P.W.M., VanSoolongen D., Drijfhout J.W., Schoningh R., Janson A.A.A., Thole J.E.R. Mycobacteria contain two GroEL genes-the second Mycobacterium leprae GroEL gene is arranged in an operon with GroES. Mol Microbiol 1992; 6:1995–2007
    [Google Scholar]
  29. Saiki R.K. The design and optimisation of the PCR. In PCR Technology 1989 Edited by Erlich H.A. New York: Stockton Press; pp 25–30
    [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sei USA 1977; 74:5463–5477
    [Google Scholar]
  31. Seldenrijk C.A., Drexhage H.A., Meuwissen S.G.M., Meijer C.J.L.M. T-cellular immune reactions (in macrophage inhibition-factor assay) against Mycobacterium paratuberculosis, Mycobacterium kansasii, Mycobacterium tuberculosis, and Mycobacterium avium in patients with chronic inflammatory bowel disease. Gut 1990; 31:529–535
    [Google Scholar]
  32. Shinnick T.M. The 65-kilodalton antigen of Mycobacterium tuberculosis. J Bacteriol 1987; 169:1080–1088
    [Google Scholar]
  33. Shinnick T.M., Sweetser D., Thole T., Vanembden J., Young R.A. The etiologic agents of leprosy and tuberculosis share an immunoreactive protein antigen with the vaccine strain Mycobacterium bovis BCG. Infect Immun 1987; 55:1932–1935
    [Google Scholar]
  34. Smith D.B., Johnson K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione A-transferase. Gene 1988; 67:31–40
    [Google Scholar]
  35. Thole J.E.R., Keulen W.J., Kolk A.H.J., Groothuis D.G., Berwald I.G., Tiesjema R.H., Vanembden J.D.A. Characterization, sequence determination, and immunogenicity of a 64-kilodalton protein of Mycobacterium bovis BCG expressed in Escherichia coli K-12. Infect Immun 1987; 55:1466–1475
    [Google Scholar]
  36. Vary P.H., Andersen P.R., Green E., Hermon-Taylor J., McFadden J.J. Use of highly specific DNA probes and the polymerase chain-reaction to detect Mycobacterium paratuberculosis in Johne’s disease. J Clin Microbiol 1990; 28:933–937
    [Google Scholar]
  37. Young D., Lathigra R., Hendrix R., Sweetser D., Young R.A. Stress proteins are immune targets in leprosy and tuberculosis. Proc Natl Acad Sei USA 1988; 85:4267–4270
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-12-3329
Loading
/content/journal/micro/10.1099/13500872-140-12-3329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error