1887

Abstract

Hybridizing fragments in the genomic DNA of ISP5230, which produces the jadomycin group of angucycline antibiotics, were detected by probing with DNA from A3(2). The hybridizing regions were isolated from a 16.5 kb insert of λ replacement vector. Subcloning and sequencing of a 4.8 kb segment of the insert, containing regions hybridizing to as well as , identified five open reading frames (ORFs). The deduced polypeptide products of the ORFs closely resemble in sequence the components of streptomycete type-II polyketide synthases (PKSs): the ORF1 product corresponds to the ketoacyl synthase, and the ORF2 product to a polypeptide closely related to the ketoacyl synthase and involved in determining chain length; the ORF3 product matches the acyl carrier protein; ORF4 encodes a bifunctional cyclase/dehydrase; and ORF5 encodes a ketoreductase. Integration into the chromosomal DNA of a plasmid containing a segment of the ORF2-ORF4 region severely depressed jadomycin B biosynthesis; since the integrant showed no change in growth or spore pigmentation, the cloned PKS genes are presumed to encode enzymes in the pathway for jadomycin biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-12-3379
1994-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/12/mic-140-12-3379.html?itemId=/content/journal/micro/10.1099/13500872-140-12-3379&mimeType=html&fmt=ahah

References

  1. Ahmed Z.U., Vining L.C. Evidence for a chromosomal location of the genes coding for chloramphenicol production in Streptomyces venezuelae. J Bacteriol 1983; 154:239–244
    [Google Scholar]
  2. Aidoo D.A., Barrett K., Vining L.C. Plasmid transformation of Streptomyces venezuelae: modified procedures used to introduce the genes for p-aminobenzoate synthetase. J Gen Microbiol 1990; 136:657–662
    [Google Scholar]
  3. Arrowsmith T.J., Malpartida F., Sherman D.H., Birch A., Hopwood D.A., Robinson J.A. Characterization of actl-homologous DNA encoding polyketide synthase genes from the monensin producer Streptomyces cinnamonensis. Mol & Gen Genet 1992; 234:254–264
    [Google Scholar]
  4. Ayer S.W., Mclnnes A.G., Thibault P., Walter J.A., Doull J.L., Parnell T., Vining L.C. Jadomycin, a novel 8H-benz[b]oxazolo[3,2-f]phenanthridine antibiotic from Streptomyces venezuelae ISP5230. Tetrahedron Eett 1991; 32:6301–6304
    [Google Scholar]
  5. Bartel P.L., Zhu C.-B., Lampel J.S., Dosch D.C., Connors N.C., Strohl W.R., Beale J.M. Jr, Floss H.G. Biosynthesis of anthraquinones by interspecies cloning of actinorhodin biosynthetic genes in streptomycetes: clarification of actinorhodin gene functions. J Bacteriol 1990; 172:4816–4826
    [Google Scholar]
  6. Bibb M.J., Findlay P.R., Johnson M.W. The relationship between base composition and codon usage in bacterial genes and its use in the simple and reliable identification of protein-coding sequences. Gene 1984; 30:157–166
    [Google Scholar]
  7. Bibb M.J., Biro S., Motamedi H., Collins J.F., Hutchinson C.R. Analysis of the nucleotide sequence of the Streptomyces glaucescens tcml genes provides key information about the enzy-mology of polyketide antibiotic biosynthesis. EMBO J 1989; 8:2727–2736
    [Google Scholar]
  8. Bibb M.J., Sherman D.H., Omura S., Hopwood D.A. Cloning, sequencing and deduced functions of a cluster of Streptomyces genes probably encoding biosynthesis of the polyketide antibiotic frenolicin. Gene 1994; 142:31–39
    [Google Scholar]
  9. Blanco G., Pereda A., Mendez C., Salas J. Cloning and disruption of a fragment of Streptomyces halstedii DNA involved in the biosynthesis of a spore pigment. Gene 1992; 112:59–65
    [Google Scholar]
  10. Blanco G., Brian P., Pereda A., Mendez C., Salas J.A., Chater K.F. Hybridization and DNA sequence analysis suggest an early evolutionary divergence of related biosynthetic gene sets encoding polyketide antibiotics and spore pigments in Streptomyces spp. Gene 1993; 130:107–116
    [Google Scholar]
  11. Carter P., Bedovelle H., Winter G. Improved oligonucleotide site-directed mutagenesis using Ml3 vectors. Nucleic Acids Res 1985; 13:4431–4443
    [Google Scholar]
  12. Davis N.K., Chater K.F. Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol 1990; 4:1679–1691
    [Google Scholar]
  13. Denhardt D.T. A membrane filter technique for the detection of complementary DNA. Biochem Biophys Res Commun 1966; 23:641–646
    [Google Scholar]
  14. Doull J.L., Ahmed Z., Stuttard C., Vining L.C. Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis. J Gen Microbiol 1985; 131:97–104
    [Google Scholar]
  15. Doull J.L., Ayer S., W., Singh A.K., Thibault P. Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezueiae following heat shock. J Antibiot 1993; 46:869–871
    [Google Scholar]
  16. Doull J.L., Singh A.K., Hoare M., Ayer S.W. Conditions for the production of jadomycin B by Streptomyces venezuelae ISP5230: effects of heat shock, ethanol treatment and phage infection. J Ind Microbiol 1994; 13:120–125
    [Google Scholar]
  17. Fernandez-Moreno M.A., Martinez E., Boto L., Hopwood D.A., Malpartida F. Nucleotide sequence and deduced functions of a set of co-transcribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J Biol Chem 1992; 267:19278–19290
    [Google Scholar]
  18. Hallam S.E., Malpartida F., Hopwood D.A. Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in Streptomyces coelicolor. Gene 1988; 74:305–320
    [Google Scholar]
  19. Hopwood D.A., Khosla C. Genes for polyketide secondary metabolic pathways in microorganisms and plants. CIBA Found Symp 1992; 171:88–112
    [Google Scholar]
  20. Hopwood D.A., Sherman D.H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 1990; 24:37–66
    [Google Scholar]
  21. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M., Lydiate D.J., Smith C.P., Schrempf H. Genetic Manipulation of Streptomyces: a Laboratory Manual 1985 Norwich, UK: John Innes Foundation;
    [Google Scholar]
  22. Kieser T. Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli. Plasmid 1984; 12:290–296
    [Google Scholar]
  23. Kim E.-S., Bibb M.J., Butler M.J., Hopwood D.A., Sherman D.H. Sequences of the oxytetracycline polyketide synthase-encoding otc genes from Streptomyces rimosus. Gene 1994; 141:141–142
    [Google Scholar]
  24. Larson J.L., Hershberger C.L. The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid 1986; 15:199–209
    [Google Scholar]
  25. Malpartida F., Hallam S.E., Kieser H.M., Hopwood D.A. Organization of the actinorhodin genes of Streptomyces coelicolor and their use as probes to isolate other polyketide biosynthetic genes: implications for ‘ hybrid ’ antibiotic production. In Proceedings of the 5th International Symposium Genetics of Industrial Microorganisms 1987a Edited by Alacevic M., Hranueli D., Toman Z. Zagreb, Yugoslavia: Pliva; 1986, pp 29–39
    [Google Scholar]
  26. Malpartida F., Hallam S.E., Kieser H.M., Motamedi H., Hutchinson C.R., Butler M.J., Sugden D.A., Warren M., McKillop C., Bailey C.R., Humphreys G.O., Hopwood D.A. Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic biosynthetic genes. Nature 1987b; 325:818–821
    [Google Scholar]
  27. McDaniel R., Ebert-Khosla S., Hopwood D.A., Khosla C. Engineered biosynthesis of novel polyketides. Science 1993; 262:1546–1550
    [Google Scholar]
  28. MacNeil D.J. Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J Bacteriol 1988; 170:5607–5612
    [Google Scholar]
  29. MacNeil D.J., Gewain K.M., Rudy C.L., Dezeny G., Gibbons P.H., & Mac Neil T. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 1992; 111:61–68
    [Google Scholar]
  30. Meese E., Olson S., Leis L., Trent J. Quick method for high yields of lambda bacteriophage DNA. Nucleic Acids Res 1990; 18:1923
    [Google Scholar]
  31. O'Hagan D. Biosynthesis of polyketide metabolites. Nat Prod Rep 1992; 9:447–479
    [Google Scholar]
  32. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning, a Laboratory Manual 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  34. Shen B., Hutchinson C.R. Enzymatic synthesis of a bacterial polyketide from acetyl and malonyl coenzyme A. Science 1993; 262:1535–1540
    [Google Scholar]
  35. Sherman D.H., Malpartida F., Bibb M.J., Kieser H.M., Bibb M.J., Hopwood D.A. Structure and deduced function of the granaticin producing polyketide synthase gene cluster of Streptomyces violaceoruber TU22. EMBO J 1989; 8:2717–2725
    [Google Scholar]
  36. Singh A.K. Production of the antibiotic jadomycin B by S. venezuelae ISP5230. effects of heat and ethanol 1992 MSc thesis, Dalhousie University, Halifax, Canada;
    [Google Scholar]
  37. Southern E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98:503–517
    [Google Scholar]
  38. Stuttard C. Temperate phages of Streptomyces venezuelae: lysogeny and host specificity shown by phages SV1 and SV2. J Gen Microbiol 1982; 128:115–121
    [Google Scholar]
  39. Tsuji N., Kobayashi M., Terui Y., Tori K. The structures of griseusins A and B, new isochromanequinone antibiotics. Tetrahedron 1976; 32:2207–2210
    [Google Scholar]
  40. Vining L.C., Westlake D.W.S. Chloramphenicol: properties, biosynthesis and fermentation. In Biotechnology of Industrial Antibiotics 1984 Edited by Vandamme E.J. New York: Marcel Dekker; pp 387–409
    [Google Scholar]
  41. Yu T.-W., Bibb M.J., Revill W.P., Hopwood D.A. Cloning, sequencing and analysis of the griseusin polyketide synthase gene cluster from Streptomyces griseus. J Bacteriol 1994; 176:2627–2634
    [Google Scholar]
  42. Zhang H.L., He X.G., Adeferati A., Gallucci J., Cole S.P., Beale J.M., Keller P.J., Chang C.J., Floss H.G. Mutactin, a novel polyketide from Streptomyces coelicolor: structure and biosynthetic relationship to actinorhodin. J Org Chem 1990; 55:1682–1684
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-12-3379
Loading
/content/journal/micro/10.1099/13500872-140-12-3379
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error