1887

Abstract

SUMMARY:

pathovar R32 expresses phage-|6-specific pili that function as adhesins anchoring bacterial cells to the surface of plants. Phage-resistant piliated and non-piliated mutants were compared to the wild-type strain with regards to pellicle formation and performance during different phases of epiphytic colonization of bush bean. The degree of piliation did not affect the ability of the strains to grow on the undisturbed plant surface. The presence of pili did, however, correlate strongly with the efficiency of the strains to initiate colonization from a liquid inoculation suspension if unadsorbed bacteria were removed by rinsing. During early colonization, wild-type bacteria became virtually resistant to displacement by rinsing within 1 d after inoculation, whereas non-piliated mutant bacteria became only partly resistant within 3 d. Piliated cells formed a pellicle on the surface of stationary liquid cultures whereas non-piliated mutant strains did not. A mechanism similar to pellicle formation may be functional on the plant surface, explaining in part the difference in resistance to removal by rinsing.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-2-497
1995-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/2/mic-141-2-497.html?itemId=/content/journal/micro/10.1099/13500872-141-2-497&mimeType=html&fmt=ahah

References

  1. Bamford D. H., Palva E. T., Lounatmaa K. 1976; Ultrastructure and life cycle of the lipid-containing bacteriophage ϕ6. J Gen Virol 32:249–259
    [Google Scholar]
  2. Blakeman J. P. 1991; Foliar plant pathogens: epiphytic growth and interactions on leaves. J Appl BacteriolSymp Suppl 70:49S–59S
    [Google Scholar]
  3. Daub M. E., Hagedorn D. J. 1981; Epiphytic population of Pseudomonas syringae on susceptible and resistant bean lines. Phytopathology 71:547–551
    [Google Scholar]
  4. Doig P., Todd T., Sastry P. A., Lee K. K., Hodges R. S., Paranchych W., Irvin R. T. 1988; Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells. Infect Immun 56:1641–1646
    [Google Scholar]
  5. van Doorn J., Boonekamp P. M., Oudega B. 1994; Partial characterization of fimbriae of Xanthomonas campestris pv. hyacinthi. Mol Plant-Microbe Interact 7:334–344
    [Google Scholar]
  6. Ercolani G. L., Hagedorn D. J., Kelman A., Rand R. E. 1974; Epiphytic survival of Pseudomonas syringae on hairy vetch in relation to epidemiology of bacterial brown spot of bean in Wisconsin. Phytopathology 64:1330–1339
    [Google Scholar]
  7. Goochee C. F., Hatch R. T., Cadman T. W. 1987 Some observations on the role of type 1 fimbriae in Escherichia coli autoflocculation. In Biotechnology and Bioengineering vol. XXIX pp 1024–1034 New York: Wiley & Sons;
    [Google Scholar]
  8. Goodman A. E., Hild E., Marshall K. C., Hermansson M. 1993; Conjugative plasmid transfer between bacteria under simulated marine oligotrophic conditions. Appl Environ Microbiol 59:1035–1040
    [Google Scholar]
  9. Hirano S. S., Upper C. D. 1990; Population biology and epidemiology of Pseudomonas syringae . Annu Rev Phytopathol 28:155–177
    [Google Scholar]
  10. Hirano S. S., Upper C. D. 1992 Population dynamics of Pseudomonas syringae in the phyllosphere. In Pseudomonas: Molecular Biology and Biotechnology pp 21–29 Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Hirano S. S., Nordheim E. V., Arny D. C., Upper C. D. 1982; Lognormal distribution of epiphytic bacterial populations on leaf surfaces. Appl Environ Microbiol 44:695–700
    [Google Scholar]
  12. Jann K., Jann B. (Eds) 1990 Bacterial adhesins. Current Topics of Microbiology and Immunologyno. 151 Berlin & Heidelberg: Springer Verlag;
    [Google Scholar]
  13. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307
    [Google Scholar]
  14. Leben C., Whitmoyer R. E. 1979; Adherence of bacteria to leaves. Can J Microbiol 25:896–901
    [Google Scholar]
  15. Lindow S. E. 1991 Determinants of epiphytic fitness in bacteria. In Microbial Ecology of Leaves pp 295–315 Edited by Andrews J. H., Hirano S. S. New York: Springer Verlag;
    [Google Scholar]
  16. Lindow S. E. 1993; Novel method for identifying bacterial mutants with reduced epiphytic fitness. Appl Environ Microbiol 59:1586–1592
    [Google Scholar]
  17. Mariano R. L. R., McCarter S. M. 1993; Epiphytic survival of Pseudomonas viridiflava on tomato and selected weed species. Microb Ecol 26:47–58
    [Google Scholar]
  18. Matthysse A. G. 1983; Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 154:906–915
    [Google Scholar]
  19. Matthysse A. G. 1987; Characterization of non-attaching mutants of Agrobacterium tumefaciens . J Bacteriol 169:313–323
    [Google Scholar]
  20. O’Brien R. D., Lindow S. E. 1988; Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology 79:619–627
    [Google Scholar]
  21. O’Morchoe S. B., Ogunseitan O., Sayler G. S., Miller R. V. 1988; Conjugal transfer of R68.45 and FP5 between Pseudomonas aeruginosa strains in a freshwater environment. Appl Environ Microbiol 54:1923–1929
    [Google Scholar]
  22. Romantschuk M. 1992; Attachment of plant pathogenic bacteria to plant surfaces. Annu Rev Phytopathol 30:225–243
    [Google Scholar]
  23. Romantschuk M., Bamford D. H. 1986; The causal agent of halo blight in bean, Pseudomonas syringae pv phaseolicola, attaches to stomata via its pili. Microb Pathog 1:139–148
    [Google Scholar]
  24. Romantschuk M., Nurmiaho-Lassila E. L., Roine E., Suoniemi A. 1993; Pilus-mediated adsorption of Pseudomonas syringae to the surface of host and non-host plant leaves. J Gen Microbiol 139:2251–2260
    [Google Scholar]
  25. Sato H., Okinaga K., Saito H. 1988; Role of pili in the pathogenesis of Pseudomonas burn infection. Microbiol Immunol 32:131–139
    [Google Scholar]
  26. Simon R., Quandt J., Klipp W. 1989; New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene 80:161–169
    [Google Scholar]
  27. Smit G., Kijne J. W., Lugtenberg B. J. J. 1987; Involvement of both cellulose fibrils and Ca2+ -dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol 169:4292–4301
    [Google Scholar]
  28. Smit G., Logman T. J. J., Boerrigter M. T. E. I., Kijne J. W., Lugtenberg B. J. J. 1989; Purification and partial characterisation of the Ca2+ -dependent adhesin from Rhizobium leguminosarum biovar viciae, which mediates the first step in attachment of Rhizobiaceae to plant root hair tips. J Bacteriol 171:4054–4062
    [Google Scholar]
  29. Swart S., Smit G., Lugtenberg B. J. J., Kijne J. W. 1993; Restoration of attachment, virulence and nodulation of mutants by rhicadhesin. Mol Microbiol 10:597–605
    [Google Scholar]
  30. Vidaver A. K., Koski R. K., Van Etten J. L. 1973; Bacteriophage ϕ6: a lipid-containing virus of Pseudomonas phaseolicola . J Virol 11:799–805
    [Google Scholar]
  31. Westerlund B., Korhonen T. K. 1993; Bacterial proteins binding to the mammalian extracellular matrix. Mol Microbiol 9:687–694
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-2-497
Loading
/content/journal/micro/10.1099/13500872-141-2-497
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error