1887

Abstract

Summary: Our previous studies revealed that of subsp. strain 71 suppressed the synthesis of the cell density (quorum) sensing signal -(3-oxohexanoyl)-L-homoserine lactone, the production of extracellular enzymes and tissue macerating ability in soft-rotting species and that homologues of this negative regulator gene were present in other species. Northern blot data presented here demonstrate that and -like genes are also expressed in soft-rotting and non-soft-rotting spp. such as subsp. subsp. subsp. and A low-copy plasmid carrying of subsp. strain 71 caused suppression of antibiotic production in subsp. flagellum formation in subsp. carotenoid production in and and indigoidine production in In of subsp. suppressed the elicitation of the hypersensitive reaction in tobacco leaves and the production of disease symptoms in apple shoots, in addition to repressing motility and extracellular polysaccharide production. We conclude that homologues function as global regulators of secondary metabolic pathways as well as factors controlling host interaction of species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-2-427
1996-02-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/2/mic-142-2-427.html?itemId=/content/journal/micro/10.1099/13500872-142-2-427&mimeType=html&fmt=ahah

References

  1. Axelrood P. E., Rella M., Schroth M. N. 1988; Role of antibiosis in competition of Erwinia strains in potato infection courts. Appl Environ Microbiol 54:1222–1229
    [Google Scholar]
  2. Bainton N. J., Stead P., Chhabra S. R., Bycroft B. W., Salmond G. P. C., Stewart G. S. A. B., Williams P. 1992; IV-(3-Oxo-hexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 288:997–1004
    [Google Scholar]
  3. Baker C. J., Orlandi E. W., Mock N. M. 1993; Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol 102:1341–1344
    [Google Scholar]
  4. Barras F., Thurn K. K., Chatterjee A. K. 1987; Resolution of four pectate lyase structural genes of Erwinia chrysanthemi (EC16) and characterization of the enzymes produced in Escherichia coli. Mol & Gen Genet 209:319–325
    [Google Scholar]
  5. Barras F., van Gijsegem F., Chatterjee A. K. 1994; Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol 32:201–234
    [Google Scholar]
  6. Beck von Bodman S., Farrand S. K. 1995; Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an iV-acylhomoserine lactone autoinducer. J Bacteriol 177:5000–5008
    [Google Scholar]
  7. Beer S. V., Bauer D. W., Jiang X. H., Laby R. J., Sneath B. J., Wei Z. M., Wilcox D. A., Zumoff C. H. 1991; The hrp gene cluster of Erwinia amylovora. Proceedings of the 5th International Symposium on Molecular Genetic Plant-Microbe Interactions53–60 Edited by Hennecke H., Verma D. P. S. The Netherlands: Kluwer Academic Publishers;
    [Google Scholar]
  8. Bernhard F., Poetter K., Geider K., Coplin D. L. 1990; The res A gene from Erwinia amylovora: identification, nucleotide sequence, and regulation of exopolysaccharide biosynthesis. Mol Plant-Microbe Interact 3:429–437
    [Google Scholar]
  9. Bugert P., Geider K. 1995; Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovora. Mol Microbiol 15:917–933
    [Google Scholar]
  10. Chatterjee A. K. 1980; Acceptance by Erwinia spp of R plasmid R68.45 and its ability to mobilize the chromosome of Erwinia chrysanthemi. J Bacteriol 142:111–119
    [Google Scholar]
  11. Chatterjee A. K., Brown M. A. 1981; Chromosomal location of a gene (idg) that specifies production of the blue pigment indigoidine in Erwinia chrysanthemi. Curr Microbiol 6:269–273
    [Google Scholar]
  12. Chatterjee A. K., Vidaver A. K. 1986; Genetics of pathogenicity factors: application to phytopathogenic bacteria. Advances in Plant Pathology 41–224 Edited by Ingram D. S., Williams P. H. London: Academic Press;
    [Google Scholar]
  13. Chatterjee A., McEvoy J. L., Chambost J. P., Blasco F., Chatterjee A. K. 1991; Nucleotide sequence and molecular characterization of pnlA, the structural gene for damage-inducible pectin lyase of Erwinia carotovora subsp. carotovora. J Bacteriol 173:1765–1769
    [Google Scholar]
  14. Chatterjee A., Cui Y. Y., Liu Y., Dumenyo C. K., Chatterjee A. K. 1995; Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone. Appl Environ Microbiol 61:1959–1967
    [Google Scholar]
  15. Coleman M., Pearce R., Hitchin E., Busfield F., Mansfield J. W., Roberts I. S. 1990; Molecular cloning, expression and nucleotide sequence of the rcsA gene of Erwinia amylovora, encoding a positive regulator of capsule expression: evidence for a family of related capsule activator proteins. J Gen Microbiol 136:1799–1806
    [Google Scholar]
  16. Collmer A., Keen N. T. 1986; The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol 24:383–409
    [Google Scholar]
  17. Costa J. M., Loper J. E. 1994; Derivation of mutants of Erwinia carotovora subsp. betavasculorum deficient in export of pectolytic enzymes with potential for biological control of potato soft rot. Appl Environ Microbiol 60:2278–2285
    [Google Scholar]
  18. Cui Y. Y., Chatterjee A., Liu Y., Dumenyo C. K., Chatterjee A. K. 1995; Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone and pathogenicity in soft-rotting Erwinia. J Bacteriol 177:5108–5115
    [Google Scholar]
  19. Fuqua W. C., Winans S. C., Greenberg E. P. 1994; Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275
    [Google Scholar]
  20. Givskov M., Eberl L, Christiansen G., Benedik M. J., Molin S. 1995; Induction of phospholipase and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhD. Mol Microbiol 15:445–454
    [Google Scholar]
  21. Goodman R. N., Novacky A. J. 1994 The Hypersensitive Reaction in Plants to Pathogens, a Resistance Phenomenon1–244 St Paul, MN: American Phytopathological Society Press;
    [Google Scholar]
  22. Harshey R. M. 1994; Bees aren't the only ones: swarming in Gram-negative bacteria. Mol Microbiol 13:389–394
    [Google Scholar]
  23. Hengge-Aronis R. 1993; Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72:165–168
    [Google Scholar]
  24. Jones S., Yu B., Bainton N. J., Birdsall M., Bycroft B. W., Chhabra S. R., Cox A. J. R., Golby P., Reeves P. J., Stephens S., Winson M. K., Salmond G. P. C., Stewart G. S. A. B., Williams P. 1993; The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J 12:2477–2482
    [Google Scholar]
  25. Klement Z., Goodman R. N. 1966; Hypersensitive reaction induced in apple shoots by an avirulent form of Erwinia amylovora. Acta Phytopathol Acad Sci Hung 1:177–184
    [Google Scholar]
  26. Kolter R., Sigele D. A., Tormo A. 1993; The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47:855–874
    [Google Scholar]
  27. Kotoujansky A. 1987; Molecular genetics of pathogenesis by soft-rot Erwinias. Annu Rev Phytopathol 25:405–430
    [Google Scholar]
  28. Leigh J. A., Coplin D. L. 1992; Exopolysaccharides in plant bacterial interactions. Annu Rev Microbiol 46:307–346
    [Google Scholar]
  29. Lerner C. G., Inouye M. 1990; Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Res 18:4631
    [Google Scholar]
  30. Liu Y., Murata H., Chatterjee A., Chatterjee A. K. 1993; Characterization of a novel regulatory gene aepA that controls extracellular enzyme production in the phytopathogenic bacterium Erwinia carotovora subsp. carotovora. Mol Plant-Microbe Interact 6:299–308
    [Google Scholar]
  31. Liu Y., Chatterjee A., Chatterjee A. K. 1994; Nucleotide sequence and expression of a novel pectate lyase gene (pel-3) and a closely linked endopolygalacturonase gene (peh-1) of Erwinia carotovora subsp. carotovora 71. Appl Environ Microbiol 60:2545–2552
    [Google Scholar]
  32. Liu Y. M., Yang H., Romeo T. 1995; The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. J Bacteriol 111:2663–2672
    [Google Scholar]
  33. Macnab R. M. 1992; Genetics and biogenesis of bacterial flagella. Annu Rev Genet 26:131–158
    [Google Scholar]
  34. McGowan S., Sebaihia M., Jones S., Yu B., Bainton N., Chan P. F., Bycroft B., Stewart G. S. A. B., Williams P., Salmond G. P. C. 1995; Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141:541–550
    [Google Scholar]
  35. Murata H., Fons M., Chatterjee A., Collmer A., Chatterjee A. K. 1990; “Characterization of transposon insertion Out” mutants of Erwinia carotovora subsp. carotovora. defective in enzyme export and of a DNA segment that complements out mutations in E. carotovora subsp. E. C. carotovora arotovora subsp. atroseptica, and Erwinia chrysanthemi. J Bacteriol 172:2970–2978
    [Google Scholar]
  36. Murata H., McEvoy J. L., Chatterjee A., Collmer A., Chatterjee A. K. 1991; Molecular cloning of an aepA gene that activates production of extracellular pectolytic, cellulolytic and proteolytic enzymes in Erwinia carotovora subsp. carotovora. Mol Plant-Microbe Interact 4:239–246
    [Google Scholar]
  37. Murata H., Chatterjee A., Liu Y., Chatterjee A. K. 1994; Regulation of the production of extracellular pectinase, cellulase, and protease in the soft rot bacterium Erwinia carotovora subsp. carotovora: evidence that aepH of E. carotovora subsp. carotovora 71 activates gene expression in E. carotovora subsp. carotovora, E. carotovora subsp. atroseptica, and Escherichia coli. Appl Environ Microbiol 60:3150–3159
    [Google Scholar]
  38. Pirhonen M., Flego D., Heikinheimo R., Palva E. T. 1993; A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 12:2467–2476
    [Google Scholar]
  39. Politis D. J., Goodman R. N. 1980; Fine structure of extracellular polysaccharide of Erwinia amylovora. Appl Environ Microbiol 40:596–607
    [Google Scholar]
  40. Reverchon S., Nasser W., Robert-Baudouy J. 1994; pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Mol Microbiol 11:1127–1139
    [Google Scholar]
  41. Roberts I. S., Coleman M. J. 1991; The virulence of Erwinia amylovora: molecular genetic perspectives. J Gen Microbiol 137:1453–1457
    [Google Scholar]
  42. Salmond G. P. C., Hinton J. C. D., Gill D. R., Perombelon M. C. M. 1986; Transposon mutagenesis of Erwinia using phage λ vectors. Mol & Gen Genet 203:524–528
    [Google Scholar]
  43. Salmond G. P. C., Bycroft B. W., Stewart G. S. A. B., Williams P. 1995; The bacterial ‘enigma’: cracking the code of cell-cell communication. Mol Microbiol 16:615–624
    [Google Scholar]
  44. Starr M. P. 1983; The genus Erwinia.. The Prokaryotes 21260–1271 Edited by Starr M. P., Stolp H., Truper H. G., Balows A., Schlegel H. G. Berlin: Springer-Verlag;
    [Google Scholar]
  45. Swift S., Winson M. K., Chan P. F., Bainton N. J., Birdsall M., Reeves P. J., Rees C. E. D., Chhabra S. R., Hill P. J., Throup J. P., Bycroft B. W., Salmond G. P. C., Williams P., Stewart G. S. A. B. 1993; A novel strategy for the isolation of luxl homologues: evidence for the widespread distribution of a LuxR:Luxl super-family in enteric bacteria. Mol Microbiol 10:511–520
    [Google Scholar]
  46. Swift S., Bainton N. J., Winson M. K. 1994; Gram-negative bacterial communication by N-acyl homoserine lactones: a universal language?. Trends Microbiol 2:193–198
    [Google Scholar]
  47. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82:1047–1078
    [Google Scholar]
  48. Van der Zwet T., Beer S. V. 1992; Fire Blight-its Nature, Prevention, and Control. A Practical Guide to Integrated Disease Management USD A Agriculture Information Bulletin Number 631
    [Google Scholar]
  49. Vanneste J. L. 1995; Erwinia amylovora. Pathogenesis and Host Specificity in Plant Diseases: Histopathological, Biochemical, Genetic and Molecular Bases vol. 1 Prokaryotes21–41 Edited by Singh U. S., Kohmoto K. Oxford, London: Pergamon Press;
    [Google Scholar]
  50. Wei Z. M., Laby R. J., Zumoff C. H., Bauer D. W., He S. Y., Collmer A., Beer S. V. 1992a; Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88
    [Google Scholar]
  51. Wei Z. M., Sneath B. J., Beer S. V. 1992b; Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J Bacteriol 114:1875–1882
    [Google Scholar]
  52. Williams P., Bainton N. J., Swift S., Chhabra S. R., Winson M. K., Stewart G. S. A. B., Salmond G. P. C., Bycroft B. W. 1992; Small molecule-mediated density-dependent control of gene expression in prokaryotes: bioluminescence and the biosynthesis of carbapenem antibiotics. FEMS Microbiol Lett 100:161–168
    [Google Scholar]
  53. Willis D. K., Rich J. J., Hrabak E. M. 1991; hrp genes of phytopathogenic bacteria. Mol Plant-Microbe Interact 4:132–138
    [Google Scholar]
  54. Xiao Y., Heu S., Yi J., Lu Y., Hutcheson S. W. 1994; Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J Bacteriol 176:1025–1036
    [Google Scholar]
  55. Zink R. T., Kemble R. J., Chatterjee A. K. 1984; Transposon Tn5 mutagenesis in Erwinia carotovora subsp. carotovora and E. carotovora subsp. atroseptica. J Bacteriol 157:809–814
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-2-427
Loading
/content/journal/micro/10.1099/13500872-142-2-427
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error