1887

Abstract

An acid-sensitive mutant TG5-46, derived from WSM419 by Tn5 mutagenesis, fails to grow below pH 6.0 whereas the parent strain grows at pH 5.7. The DNA sequence of a 2.2 kb rhizobial DNA region flanking Tn5 in TG5-46 contains two open reading frames, ORF1 (designated ) and ORF2 (designated ), having high similarity to the sensor-regulator pairs of the two-component systems involved in signal transduction in prokaryotes. Insertion of an omega interposon into in WSM419 resulted in an acid-sensitive phenotype. A DNA fragment from the wild-type complemented the acid-sensitive phenotype of RT295 (ActS) and TG5-46 (ActR), while fragments containing only or complemented TG5-46 and RT295, respectively. The presence of multiple copies of complementes not only TG5-46 but also RT295. Cloning DNA upstream from and into a broad-host-range expression vector and measuring β-galactosidase activities showed that both genes are constitutively expressed regardless of the external pH. Genomic DNA from all strains of , but no other bacteria tested, hybridized with an probe at high stringency. These data implicate a two-component sensor-regulator protein pair in acid tolerance in and suggest their involvement in pH sensing and/or response by these bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-7-1693
1996-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/7/mic-142-7-1693.html?itemId=/content/journal/micro/10.1099/13500872-142-7-1693&mimeType=html&fmt=ahah

References

  1. Aarons S.R., Graham P. H. 1991; Response of Rhizobium leguminosarum biovar phaseoli to acidity. Plant Soil 134:145–151
    [Google Scholar]
  2. Albright L. M., Huala E., Ausubel F. 1989; Prokaryotic signal transduction mediated by sensor and regulator pairs. Annu Rev Genet 23:311–336
    [Google Scholar]
  3. Aliabadi Z., Park Y. K., Slonczewski J.L., Foster J.W. 1988; Novel regulatory loci controlling oxygen- and pH-regulated gene expression in Salmonella typhimurium. J Bacteriol 170:842–851
    [Google Scholar]
  4. Booth I.R. 1985; Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359–378
    [Google Scholar]
  5. Bourret R. B., Borkovich K. A., Simon M. I. 1991; Signal transduction involving protein phosphorylation in prokaryotes. Annu Rev Biochem 60:401–441
    [Google Scholar]
  6. Boyd J. M., Koga T., Lory S. 1994; Identification and characterization of pil S, an essential regulator of pilin expression in Pseudomonas aeruginosa. Mol Gen Genet 243:565–574
    [Google Scholar]
  7. Boyer H.W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli.. J Mol Biol 41:459–472
    [Google Scholar]
  8. Caldwell P.C. 1956; Intracellular pH.. Int Rev Cytol 5:229–277
    [Google Scholar]
  9. Chen C., Winans S. C. 1991; Controlled expression of the transcriptional activator gene vir G in Agrobacterium tumefaciens by using the Escherichia coli lac promoter. J Bacteriol 173:1139–1144
    [Google Scholar]
  10. Ditta G., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351
    [Google Scholar]
  11. Eraso J.M., Kaplan S. 1994; Prr A, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in RHodobacter sphaeroides. J Bacteriol 176:32–43
    [Google Scholar]
  12. Eraso J.M., Kaplan S. 1995; Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides — a mutant histidine kinase. J Bacteriol 177:2695–2706
    [Google Scholar]
  13. Fellay R., Frey J., Krisch H. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in- vitro insertional mutagenesis of Gram-negative bacteria. Gene 52:147–154
    [Google Scholar]
  14. Foster J.W. 1992; The acid-tolerance response of Salmonella tjphimurium involves transient synthesis of key acid shock proteins.. J Bacteriol 175:1981–1987
    [Google Scholar]
  15. Foster J.W., Hall H. K. 1990; Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol 172:771–778
    [Google Scholar]
  16. Foster J.W., Hall H. K. 1991; Inducible pH homeostasis and the acid-tolerance response of Salmonella tjphimurium. J Bacteriol 173:5129–5135
    [Google Scholar]
  17. Foster J. W., Park Y. K., Bang I. S., Karem K., Betts H., Hall H. K., Shaw E. 1994; Regulatory circuits involved with pH- regulated gene expression in Salmonella typhimurium. Microbiology 140:341–352
    [Google Scholar]
  18. Glenn A.R., Dilworth M. J. 1994; The life of root nodule bacteria in the acidic underground. FEMS Microbiol Lett 123:1–9
    [Google Scholar]
  19. Glenn A. R., Knuckey R., Dilworth M. J. 1986; Periplasmic proteins of Rhizobium : variation with growth conditions and the use in strain identification. FEMS Microbiol Lett 70:842–851
    [Google Scholar]
  20. Goodson N.Y., Rowbury R. J. 1989a; Resistance of acid- habituated Escherichia coli to organic acids and its medical and applied significance.. Lett Appl Microbiol 8:211–214
    [Google Scholar]
  21. Goodson N.Y., Rowbury R. J. 1989b; Habituation to normally lethal acidity by prior growth of Escherichia coli at a sub-lethal acid pH value.. Lett Appl Microbiol 8:77–79
    [Google Scholar]
  22. Goss T. G., O'Hara G.W., Dilworth M. J., Glenn A. R. 1990; Cloning, characterisation, and complementation of lesions causing acid-sensitivity in Tn5 induced mutants of Rhizobium meliloti WSM419. J Bacteriol 172:5173–5179
    [Google Scholar]
  23. Graham P.H., Parker C. A. 1964; Diagnostic features in the characterisation of the root-nodule bacteria of legumes.. Plant Soil 20:383–396
    [Google Scholar]
  24. Howieson J.G., Ewing M. A. 1986; Acid-tolerance in the Rhizobium meliloti-Medicago symbiosis.. Aust J Agrie Res 37:55–64
    [Google Scholar]
  25. Ishimoto K.S., Lory S. 1992; Identification of pil R, which encodes a transcriptional activator of the Pseudomonas aeruginosa pilin gene. J Bacteriol 174:3514–3521
    [Google Scholar]
  26. Kaminski P.A., Elmerich C. 1991; Involvement of Fix LJ in the regulation of nitrogen fixation in Azorhizobium caulinodans. Mol Microbiol 5:665–673
    [Google Scholar]
  27. Karem K. L., Foster J. W., Bej A. K. 1994; Adaptive acid tolerance response (ATR) in Aeromonas hydrophila. Microbiology 140:1731–1736
    [Google Scholar]
  28. Lee I. S., Slomczewski J. L., Foster J. W. 1994; A low-pH- inducible, stationary-phase acid tolerance response in Salmonella typhimurium. J Bacteriol 176:1422–1426
    [Google Scholar]
  29. Liljeström P., Laamanen I., Palva E.T. 1988; Structure and the expression of the omp B operon, the regulatory locus of the outer membrane porin regulon in Salmonella typhimurium LT-2.. J Mol Biol 201:663–673
    [Google Scholar]
  30. Miller J.H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Monson E. K., Ditta G. S., Helinski D. R. 1995; The oxygen sensor protein, Fix L of Rhizobium meliloti - role of histidine residues in heme binding, phosphorylation, and signal transduction. J Biol Chem 270:5243–5250
    [Google Scholar]
  32. Mosley C. S., Suzuki J. Y., Bauer C. E. 1994; Identification and molecular genetic characterization of a sensor kinase responsible for coordinately regulating light harvesting and reaction center gene expression in response to anaerobiosis. J Bacteriol 176:7566–7573
    [Google Scholar]
  33. Munns D.N. 1986; Acid soil tolerance in legumes and rhizobia. In Advances in Plant Nutrition pp. 63–90 Edited by Tinker B., Lauchlie A. New York: Praeger Scientific;
    [Google Scholar]
  34. O'Hara G.W., Glenn A. R. 1994; The adaptive acid tolerance response in root-nodule bacteria and Escherichia coli.. Arch Microbiol 161286–292
    [Google Scholar]
  35. O'Hara G.W.W., Goss T. J., Dilworth M. J., Glenn A. R. 1989; Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 551870–1876
    [Google Scholar]
  36. Nara F., Matsuyama S., Mizuno T., Mizushima S. 1986; Molecular analysis of mutant omp R genes exhibiting different phenotypes as to osmoregulation of the omp F and omp C genes of Escherichia coli. Mol Gen Genet 202:194–199
    [Google Scholar]
  37. Olson E.R. 1993; Influence of pH on bacterial gene expression. Mol Microbiol 8:5–14
    [Google Scholar]
  38. Padan E., Schuldiner S. 1986; Intracellular pH regulation in bacterial cells. Methods Encymol 125:337–365
    [Google Scholar]
  39. Padan E., Zilberstein D., Schuldiner S. 1982; pH homeostasis in bacteria. Biochim Biophys Acta 650:151–166
    [Google Scholar]
  40. Parkinson J.S., Kofoid E. C. 1992; Communication modules in bacterial signalling proteins. Annu Rev Genet 26:71–112
    [Google Scholar]
  41. Pearson W.R., Lipman D. J. 1988; Improved tools for biological sequence analysis. Proc Natl Acad Sci USA 85:2444–2448
    [Google Scholar]
  42. Penny D. C., Nyborg M., Hoyt P. B., Rice W. A., Siemens B., Laverty D. H. 1977; An assessment of the soil acidity problem in Alberta and Northeastern British Columbia. Can J Soil Sci 57:157–164
    [Google Scholar]
  43. Phillips-Jones M.K., Hunter C. N. 1994; Cloning and nucleotide sequence of reg A, a putative response regulator gene of Rhodobacter sphaeroides. FEMS Microbiol Lett 116:269–275
    [Google Scholar]
  44. Qian Y.L., Tabita F. R. 1996; A global signal transduction system regulates aerobic and anaerobic C02 fixation in Rhodobacter sphaeroides. J Bacteriol 178:12–18
    [Google Scholar]
  45. Quandt J., Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15–21
    [Google Scholar]
  46. Raja N., Goodson M., Chui W. C. M., Smith D. G., Rowbury R. J. 1991a; Habituation to acid in Escherichia coli conditions for habituation and its effects on plasmid transfer. J Appl Bacteriol 70:59–65
    [Google Scholar]
  47. Raja N., Goodson M., Smith D. G., Rowbury R. J. 1991b; Decreased DNA damage by acid and increased repair of acid- damaged DNA in acid habituated Escherichia coli. J Appl Bacteriol 70:507–511
    [Google Scholar]
  48. Reeve W. G., Tiwari R. P., Dilworth M. J., Glenn A. R. 1993; Calcium affects the growth and survival of Rhizobium meliloti. Soil Biol Biochem 25:581–586
    [Google Scholar]
  49. Robson A.D., Loneragan J. F. 1970; Nodulation and growth of Medicago truncatula on acid soils. II. Colonization of acid soils by Rhizobium meliloti. Aust J Agrie Res 21:435–445
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2 nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Sganga M.W., Bauer C. E. 1992; Regulatory factors controlling photosynthetic reaction centre and light-harvesting gene expression in Rhodobacter capsulatus. cell 68:945–954
    [Google Scholar]
  52. Spaink H. P., Robert G. H., Okker C. A., Wijffelman E. P., Ben J. J. L. 1987; Promoters in the nodulation region of the Rhizobium leguminosarum sym plasmid pRL1JI. Plant Mol Biol 9:27–39
    [Google Scholar]
  53. Sprent J.I. 1990; Evolution, structure and function of nitrogen-fixing root nodules: confession of ignorance. In Nitrogen Fixation: Achievements and Objectives pp. 45–54 Edited by Gresshoff P. M., Roth L. E. , Stacey J., Newtons W. A. New York: Chapman and Hall;
    [Google Scholar]
  54. Stock J. B., Ninfa A. J., Stock A. M. 1989; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490
    [Google Scholar]
  55. Tate S., Kato M., Nishimura Y., Arata Y., Mizuno T. 1988; Location of DNA-binding segment of a positive regulator, Omp R involved in activation of the omp F and omp C genes of Escherichia coli.. FEBS Lett 242:27–30
    [Google Scholar]
  56. Thomas J. A., Cole R. E., Langworthy T. A. 1976; Intracellular pH measurements with a spectroscopic probe generated in situ.. Fed Proc 35:14–55
    [Google Scholar]
  57. Thompson J. D., Higgins D. G., Gibson T. J. 1994; Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.. Nucleic Acids Rat 22:4673–4680
    [Google Scholar]
  58. Tiwari R. P., Reeve W. G., Glenn A. R. 1992; Mutations conferring acid-sensitivity in the acid-tolerant strains of Rhizobium meliloti WSM419 and Rhizobium leguminosarum biovar viciae WSM710.. FEMS Microbiol Lett 100:107–112
    [Google Scholar]
  59. Tiwari R. P., Reeve W. G., Dilworth M. J., Glenn A. R. 1996; An essential role for act A in acid tolerance of Rhizobium meliloti. Microbiology 142:601–610
    [Google Scholar]
  60. Waddel W.J., Bates R. G. 1969; Intracellular pH.. Physiol Rev 49:285–329
    [Google Scholar]
  61. Wanner B.L. 1992; Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria?. J Bacteriol 174:2053–2058
    [Google Scholar]
  62. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  63. Young J.P.W., Downer H. L., Eardly B. D. 1991; Phylogeny of the phototrophic Rhizobium strain BTAil by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 173:2271–2277
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-7-1693
Loading
/content/journal/micro/10.1099/13500872-142-7-1693
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error