1887

Abstract

In , the MetR and PurR proteins positively and negatively regulate gene expression, respectively. A DNase I footprint analysis showed that both proteins bind independently to the control region. The PurR protein blocks RNA polymerase (RNAP) from binding to the promoter. The presence of hypoxanthine, the co-repressor of PurR, increases the ability of PurR to prevent RNAP binding, providing a model for repression of the gene by PurR. In contrast, MetR alters the RNAP footprint pattern of the control region. In addition, the MetR footprint is increased in the presence of RNAP, suggesting that the two proteins might interact.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-7-1819
1996-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/7/mic-142-7-1819.html?itemId=/content/journal/micro/10.1099/13500872-142-7-1819&mimeType=html&fmt=ahah

References

  1. Blakley R.L. 1969 The biochemistry of Folic Acid and belated Pteridines Amsterdam: Elsevier/North-Holland Publishing;
    [Google Scholar]
  2. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  3. Byerly K. A., Urbanowski M. L., Stauffer G. V. 1991; The Met R binding site in the Salmonella typhimurium met H gene: DNA sequence constraints on activation. J Bacteriol 173:3547–3553
    [Google Scholar]
  4. Cowan J. M., Urbanowski M. L., Talmi M., Stauffer G. V. 1993; Regulation of the Salmonella typhimurium met F gene by the Met R protein. J Bacteriol 175:5862–5866
    [Google Scholar]
  5. Dev I.K., Harvey R. J. 1984; Regulation of synthesis of serine hydroxymethyltransferase in chemostat cultures of Escherichia coli. J Biol Chem 259:8394–8401
    [Google Scholar]
  6. Greene R.C., Radovich C. 1975; Role of methionine in the regulation of serine hydroxymethyltransferase in Escherichia coli. J Bacteriol 124:269–278
    [Google Scholar]
  7. Houlberg U., Jensen K. F. 1983; Role of hypoxanthine and guanine in regulation of Salmonella typhimurium pur gene expression. J Bacteriol 153:837–845
    [Google Scholar]
  8. Kilstrup M., Meng L. M., Neuhard J., Nygaard P. 1989; Genetic evidence for a repressor of synthesis of cytosine deaminase and purine biosynthetic enzymes in Escherichia coli. J Bacteriol 171:2124–2127
    [Google Scholar]
  9. Lorenz E., Stauffer G. V. 1995; Characterization of the Met R binding sites of the gly A gene in Escherichia coli. J Bacteriol 177:4113–4120
    [Google Scholar]
  10. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Eaboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  11. Mansouri A., Decter J. B., Silber R. 1972; Studies on the regulation of one-carbon metabolism. II. Repression-derepression of serine hydroxymethyltransferase by methionine in Escherichia coli 113-3. J Biol Chem 247:348–352
    [Google Scholar]
  12. Mares R. M., Urbanowski M. L., Stauffer G. V. 1992; Regulation of the Salmonella typhimurium met A gene by the Met R protein and homocysteine. J Bacteriol 174:390–397
    [Google Scholar]
  13. Maxam A.M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Ensymol 65:499–560
    [Google Scholar]
  14. Meng L.M., Nygaard P. 1990; Identification of hypoxanthine and guanine as the co-repressors for the purine regulon genes of Escherichia coli. Mol Microbiol 4:2187–2192
    [Google Scholar]
  15. Mudd S.H., Cantoni G. L. 1964; Biological transmethylation, methyl-group neogenesis and other ‘ one-carbon ’ metabolic reactions dependent upon tetrahydrofolic acid. In Comprehensive biochemistry pp. 1–47 Edited by Florkin M., Stotz E. H. . Amsterdam: Elsevier;
    [Google Scholar]
  16. Plamann M.D., Stauffer G. V. 1983; Characterization of the Escherichia coli gene for serine hydroxymethyltransferase. Gene 22:9–18
    [Google Scholar]
  17. Plamann M.D., Stauffer G. V. 1989; Regulation of the Escherichia coli gly A gene by the met R gene product and homocysteine. J Bacteriol 171:4958–4962
    [Google Scholar]
  18. Plamann M. D., Stauffer L. T., Urbanowski M. L., Stauffer G. V. 1983; Complete nucleotide sequence of the E. coli gly A gene. Nucleic Acids Res 11:2065–2075
    [Google Scholar]
  19. Rolfes R.J., Zalkin H. 1988a; Escherichia coli gene pur R encoding a repressor protein for purine nucleotide synthesis. J Biol Chem 263:19653–19661
    [Google Scholar]
  20. Rolfes R.J., Zalkin H. 1988b; Regulation of Escherichia coli pur F.. J biol Chem 263:19649–19652
    [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  22. Schell M.A. 1993; Molecular biology of the Lys R family of transcriptional regulators. Annu Rev Microbiol 47:597–626
    [Google Scholar]
  23. Schmitz A., Galas D. J. 1979; The interaction of RNA polymerase and lac repressor with the lac operator control region. Nucleic Acids Res 6:111–117
    [Google Scholar]
  24. Steiert J. G., Rolfes R. J., Zalkin H., Stauffer G. V. 1990; Regulation of the Escherichia coli gly A gene by the pur R gene product. J Bacteriol 172:3799–3803
    [Google Scholar]
  25. Steiert J. G., Kubu C., Stauffer G. V. 1992; The Pur R binding sites in the. gly A promoter region of Escherichia coli. FEMS Microbiol Lett 99:299–304
    [Google Scholar]
  26. Taylor R., Dickerman H., Weissbach H. 1966; Control of one- carbon metabolism in a methionine Bl2 auxotroph of Escherichia coli. Arch Biochem Biophys 117:405–412
    [Google Scholar]
  27. Urbanowski M.L., Stauffer G. V. 1989; The role of homo¬cysteine in the /wi/R-mediated activation of the w*tE and met H genes in Salmonella typhimurium and Escherichia coli. J Bacteriol 171:3277–3281
    [Google Scholar]
  28. Urbanowski M. L., Stauffer L T., Plamann L. S., Stauffer G. V. 1987; A new methionine locus, met R, that encodes a trans-acting protein required for activation of met E and met H in Escherichia coli and Salmonella typhimurium. J Bacteriol 169:1391–1397
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-7-1819
Loading
/content/journal/micro/10.1099/13500872-142-7-1819
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error