1887

Abstract

Analysis of spontaneous mutations in revealed a 1237 bp insertion sequence named IS and possessing a nucleotide sequence resembling those of members of the IS3 family. The chromosome of strain ADP1 contains seven copies of IS which appears to insert preferentially into , the transcriptional activator of the structural gene for -hydroxybenzoate hydroxylase. IS creates tandem 3 bp DNA duplications flanking the sites of its insertion in . Different duplication patterns are found following insertion of IS into , a structural gene for protocatechuate 3,4-dioxygenase. Therefore the insertion properties of IS appear to be influenced by its DNA target. Amino acid sequences associated with the apparent transposase function have been conserved in ORFB of IS whereas the presumed DNA-binding helix-turn-helix region of IS ORFA exhibits substantial amino acid sequence divergence from its IS3 counterparts. IS ORFA and ORFB coding sequences overlap considerably, and sequence evidence indicates mechanisms for ORFB expression in IS may resemble those employed by other members of the IS3 family. Portions of the IS terminal repeats exhibit substantial sequence divergence from other members of the IS3 family, but evolution appears to have conserved a mechanism preventing expression of the insertion sequence genes as a consequence of transcriptional readthrough.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-7-1825
1996-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/7/mic-142-7-1825.html?itemId=/content/journal/micro/10.1099/13500872-142-7-1825&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Averhoff B., Gregg-Jolly L., Elsemore D., Ornston L. N. 1992; Genetic analysis of supraoperonic clustering in Acinetobacter calcoaceticus. J Bacteriol 174:200–204
    [Google Scholar]
  3. Bouvet P.J.M., Grimont P. A. D. 1986; Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumanii sp. nov., Acinetobacter hemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov., and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter Iwoffii. Int J Syst Bacteriol 36:228–240
    [Google Scholar]
  4. Bouvet P.J.M., Jeanjean S., Vieu J.-F., Dijkshoorn L. 1990; Species, biotype, and bacteriophage type determinations compared with cell envelope protein profiles for typing Acinetobacter strains.. J Clin Microbiol 28:170–176
    [Google Scholar]
  5. Chandler M., Fayet O. 1993; Translational frameshifting in the control of transposition in bacteria. Mol Microbiol 7:497–503
    [Google Scholar]
  6. Chiou C.S., Jones A.L. 1993; Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J Bacteriol 175:732–740
    [Google Scholar]
  7. DiMarco A.A., Ornston L. N. 1994; Regulation of p-hydroxy- benzoate hydroxylase synthesis by pob R bound to an operator in Acinetobacter calcoaceticus. J Bacteriol 176:4277–4284
    [Google Scholar]
  8. DiMarco A.A., Averhoff B., Kim E. E., Ornston L. N. 1993a; Evolutionary divergence of pob A, the structural gene for p- hydroxybenzoate hydroxylase, in an Acinetobacter calacoaceticus strain well-suited for genetic analysis. Gene 125:25–33
    [Google Scholar]
  9. DiMarco A.A., Averhoff B., Ornston L. N. 1993b; Identification of the transcriptional activator pob R, and characterization of its role in the expression of pob A, the structural gene for p- hydroxybenzoate hydroxylase in Acinetobacter calcoaceticus. J Bacteriol 175:4499–4506
    [Google Scholar]
  10. Dodd I.B., Egan J. B. 1990; Improved detection of helix-turn- helix DNA-binding motifs in protein sequences.. Nucleic Acids Res 18:5019–5026
    [Google Scholar]
  11. Elsemore D., Ornston L. N. 1994; The pca-pob supraoperonic cluster of Acinetobacter calcoaceticus contains qui A, the structural gene for quinate/shikimate dehydrogenase. J Bacteriol 176:7659–7666
    [Google Scholar]
  12. Elsemore D., Ornston L. N. 1995; Unusual ancestry of dehydratases associated with quinate catabolism in Acinetobacter calcoaceticus. J Bacteriol 177:5971–5978
    [Google Scholar]
  13. Fayet O., Ramond P., Polard P., Prère M.F., Chandler M. 1990; Functional similarities between retroviruses and the I Si family of insertion sequences?. Mol Microbiol 4:1771–1777
    [Google Scholar]
  14. Galas J.G., Chandler M. 1989; Bacterial insertion sequences. In Mobile DNA pp. 109–162 Edited by Berg D. E., Howe M. M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Garcia M. J., Guilhot C., Lath igra R., Menendez M. C., Domenech P., Moreno C., Gicquel B., Martin C. 1994; Insertion sequence IS 1137, a new ISi family element from Mycobacterium smegmatis. Microbiology 140:2821–2828
    [Google Scholar]
  16. Gerischer U., Dürre P. 1993; Sequencing using custom designed oligonucleotides. In Methods in Molecular Biology : DNA Sequencing Laboratory Protocols pp. 75–81 Edited by Griffin H.G., Griffin A. M. Totowa, NJ: The Human Press;
    [Google Scholar]
  17. Gerischer U., Ornston L. N. 1995; Spontaneous mutations in pca H,G, structural genes for protocatechuate 3,4-dioxygenase in Acinetobacter calcoaceticus. J Bacteriol 177:1336–1347
    [Google Scholar]
  18. Hartnett G. B., Averhoff B., Ornston L. N. 1990; Selection of Acinetobacter calcoaceticus mutants deficient in pob A, a member of a supraoperonic cluster. J Bacteriol 172:6160–6161
    [Google Scholar]
  19. Ino T., Nichimura Y. 1989; Taxonomic studies of Acinetobacter species based on outer membrane protein patterns.. J Gen Appl Microbiol 35:213–224
    [Google Scholar]
  20. Juni E. 1972; Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J Bacteriol 112:917–931
    [Google Scholar]
  21. Juni E., Janik A. 1969; Transformation of Acinetobacter calcoaceticus (Bacterium anitratum). J Bacteriol 98:281–288
    [Google Scholar]
  22. Kloos D.-U., DiMarco A.A., Elsemore D. A., Timmis K., Ornston L. N. 1995; Distance between alleles as a determinant of linkage in Acinetobacter calcoaceticus. J Bacteriol 177:6015–6017
    [Google Scholar]
  23. Kowalchuk G. A., Hartnett G. B., Benson A., Houghton J. E., Ngai K. L., Ornston L. N. 1994; Contrasting patterns of evolutionary divergence within the Acinetobacter calcoaceticus pea operon. Gene 146:23–30
    [Google Scholar]
  24. Lawrence J. G., Ochman H., Hartl D. L. 1992; The evolution of insertion sequences within enteric bacteria. Genetics 131:9–20
    [Google Scholar]
  25. Machida C., Machida Y. 1987; Base substitutions in trans- posable element IS1 cause DNA duplication of variable length at the target site for plasmid cointegration. EMBO J 6:1799–1803
    [Google Scholar]
  26. Polard P., Chandler M. 1995; Bacterial transposases and retroviral integrases. Mol Microbiol 15:13–23
    [Google Scholar]
  27. Polard P., Prère M.F., Chandler M., Fayet O. 1991; Programmed translational frameshifting and initiation at an AUU codon in gene expression of bacterial insertion sequence IS911. J Mol biol 222:465–477
    [Google Scholar]
  28. Prère M.F., Chandler M., Fayet O. 1990; Transposition in Shigella dysenteriae: isolation and analysis of ISP/1, a new member of the ISi group of insertion sequences. J Bacteriol 172:4090–4099
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2 nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Sawyer S. A., Dykhuizen D. E., DuBose R.F., Green L., Nutangadura-Nhlanga T., Wolczyk D. F., Hartl D. L. 1987; Distribution and abundance of insertion sequences among natural isolates of Escherichi coli.. Genetics 115:51–63
    [Google Scholar]
  31. Sekine Y., Eisaki N., Ohtsubo E. 1994; Translational control in production of transposase and in tranposition of insertion sequence ISi. J Mol Biol 235:1406–1420
    [Google Scholar]
  32. Shanley M. S., Harrison A., Parales R. E., Kowalchuk G., Mitchell D. J., Ornston L. N. 1994; Unusual G + C content and codon usage in catl JF, a segment of the ben-cat supra-operonic cluster in the Acinetobacter calcoaceticus chromosome. Gene 138:59–65
    [Google Scholar]
  33. Spielmann-Ryser J., Moser M., Kast P., Weber H. 1991; Factors determining the frequency of plasmid cointegrate formation mediated by insertion sequence ISi from Escherichia coli. Mol Gen Genet 226:441–448
    [Google Scholar]
  34. Timmerman K.P, Tu C.-P.D.D 1985; Complete sequence of IS1.. Nucleic Acids Res 13:2127–2139
    [Google Scholar]
  35. Vögele K., Schwartz E., Welz C., Schiltz E., Rak B. 1991; High-level ribosomal frameshifting directs the synthesis of IS 150 gene products. Nucleic Acids Res 19:4377–4385
    [Google Scholar]
  36. White P. J., Hunter I. S., Fewson C. A. 1991; Codon usage in Acinetobacter structural genes. In The biology of Acinetobacter pp. 251–258 Edited by Towner K., Bergogne-Bérézin E., Fewson C. A. New York and London: Plenum Press;
    [Google Scholar]
  37. Wiedmann-AI-Ahmad M., Tichy H.-V., Schön G. 1994; Characterization of Acinetobacter type strains and isolates obtained from wastewater treatment plants by PCR fingerprinting. Appl Environ Microbiol 60:4066–4071
    [Google Scholar]
  38. Zhitomirsky D., Rosenheck S., Rosenberg E., Kaplan N. 1994; Isolation and characterization of a novel Acinetobacter insertion element. Acinetobacter ’94 : Third International Symposium on the biology of Acinetobacter. Abstract 29.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-7-1825
Loading
/content/journal/micro/10.1099/13500872-142-7-1825
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error