1887

Abstract

The aim of this study is to investigate aflatoxin gene expression during interaction. Aflatoxins are carcinogenic compounds produced mainly by and A previous study has shown that interaction can reduce aflatoxin content . Here, we first validated this same effect in the interaction with . Moreover, we showed that growth reduction and aflatoxin content were correlated in but not in . Secondly, we investigated the mechanisms of action by reverse-transcriptase quantitative PCR. As microbial interaction can lead to variations in expression of household genes, the most stable [, β (and for )] were chosen using geNorm software. To shed light on the mechanisms involved, we studied during the interaction the expression of five genes (, , , and ). Overall, the results of aflatoxin gene expression showed that repressed gene expression to a greater level in than in Expression of and was generally repressed in both species Expression of was repressed and was correlated with aflatoxin B1 content. The results suggest that expression could be a potential aflatoxin indicator in species interactions. Therefore, we demonstrate that can reduce aflatoxin production by both species and that this effect can be correlated with the repression of expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000070
2015-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/5/967.html?itemId=/content/journal/micro/10.1099/mic.0.000070&mimeType=html&fmt=ahah

References

  1. Alkhayyat F., Yu J.-H. 2014; Upstream regulation of mycotoxin biosynthesis. Adv Appl Microbiol 86:251–278 [View Article][PubMed]
    [Google Scholar]
  2. Bhatnagar D., Ullah A. H. J., Cleveland T. E. 1988; Purification and characterization of a methyltransferase from Aspergillus parasiticus SRRC 163 involved in aflatoxin biosynthetic pathway. Prep Biochem 18:321–349[PubMed]
    [Google Scholar]
  3. Bluma R., Amaiden M. R., Daghero J., Etcheverry M. 2008a). Control of Aspergillus section Flavi growth and aflatoxin accumulation by plant essential oils. J Appl Microbiol 105:203–214 [View Article][PubMed]
    [Google Scholar]
  4. Bluma R., Amaiden M. R., Etcheverry M. 2008b). Screening of Argentine plant extracts: impact on growth parameters and aflatoxin B1 accumulation by Aspergillus section Flavi . Int J Food Microbiol 122:114–125 [View Article][PubMed]
    [Google Scholar]
  5. Bohle K., Jungebloud A., Göcke Y., Dalpiaz A., Cordes C., Horn H., Hempel D. C. 2007; Selection of reference genes for normalisation of specific gene quantification data of Aspergillus niger . J Biotechnol 132:353–358 [View Article][PubMed]
    [Google Scholar]
  6. Bressan W., Figueiredo J. E. F. 2008; Efficacy and dose–response relationship in biocontrol of Fusarium disease in maize by Streptomyces spp.. Eur J Plant Pathol 120:311–316 [View Article]
    [Google Scholar]
  7. Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M. W. et al. 2009; The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622 [View Article][PubMed]
    [Google Scholar]
  8. Chang P.-K., Scharfenstein L. L., Ehrlich K. C., Wei Q., Bhatnagar D., Ingber B. F. 2012; Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biol 116:298–307 [View Article][PubMed]
    [Google Scholar]
  9. Dheda K., Huggett J. F., Bustin S. A., Johnson M. A., Rook G., Zumla A. 2004; Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–114 116:118–119[PubMed]
    [Google Scholar]
  10. Giorni P., Magan N., Pietri A., Bertuzzi T., Battilani P. 2007; Studies on Aspergillus section Flavi isolated from maize in northern Italy. Int J Food Microbiol 113:330–338 [View Article][PubMed]
    [Google Scholar]
  11. Gong Y., Hounsa A., Egal S., Turner P. C., Sutcliffe A. E., Hall A. J., Cardwell K., Wild C. P. 2004; Postweaning exposure to aflatoxin results in impaired child growth: a longitudinal study in Benin, West Africa. Environ Health Perspect 112:1334–1338 [View Article][PubMed]
    [Google Scholar]
  12. Hellemans J., Mortier G., De Paepe A., Speleman F., Vandesompele J. 2007; qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19 [View Article][PubMed]
    [Google Scholar]
  13. Holmes R. A., Boston R. S., Payne G. A. 2008; Diverse inhibitors of aflatoxin biosynthesis. Appl Microbiol Biotechnol 78:559–572 [View Article][PubMed]
    [Google Scholar]
  14. IARC. International Agency For Research on Cancer (2014). Monograph classification. http://monographs.iarc.fr/ENG/Classification/..
    [Google Scholar]
  15. Jiang Y., Jolly P. E., Ellis W. O., Wang J.-S., Phillips T. D., Williams J. H. 2005; Aflatoxin B1 albumin adduct levels and cellular immune status in Ghanaians. Int Immunol 17:807–814 [View Article][PubMed]
    [Google Scholar]
  16. Keller N. P., Kantz N. J., Adams T. H. 1994; Aspergillus nidulans verA is required for production of the mycotoxin sterigmatocystin. Appl Environ Microbiol 60:1444–1450[PubMed]
    [Google Scholar]
  17. Kim J. H., Yu J., Mahoney N., Chan K. L., Molyneux R. J., Varga J., Bhatnagar D., Cleveland T. E., Nierman W. C., Campbell B. C. 2008; Elucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis. Int J Food Microbiol 122:49–60 [View Article][PubMed]
    [Google Scholar]
  18. Magan N., Lacey J. 1984; Effects of gas composition and water activity on growth of field and storage fungi and their interactions. Trans Br Mycol Soc 82:305–314 [View Article]
    [Google Scholar]
  19. Meyers D. M., Obrian G., Du W. L., Bhatnagar D., Payne G. A. 1998; Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl Environ Microbiol 64:3713–3717[PubMed]
    [Google Scholar]
  20. Ono M., Sakuda S., Suzuki A., Isogai A. 1997; Aflastatin A, a novel inhibitor of aflatoxin production by aflatoxigenic fungi. J Antibiot (Tokyo) 50:111–118 [View Article][PubMed]
    [Google Scholar]
  21. Papa K. E. 1982; Norsolorinic acid mutant of Aspergillus . J Gen Microbiol 128:1345–1348
    [Google Scholar]
  22. Passone M. A., Rosso L. C., Ciancio A., Etcheverry M. 2010; Detection and quantification of Aspergillus section Flavi spp. in stored peanuts by real-time PCR of nor-1 gene, and effects of storage conditions on aflatoxin production. Int J Food Microbiol 138:276–281 [View Article][PubMed]
    [Google Scholar]
  23. Payne G. A., Nystrom G. J., Bhatnagar D., Cleveland T. E., Woloshuk C. P. 1993; Cloning of the afl-2 gene involved in aflatoxin biosynthesis from Aspergillus flavus . Appl Environ Microbiol 59:156–162[PubMed]
    [Google Scholar]
  24. Qian G. S., Ross R. K., Yu M. C., Yuan J. M., Gao Y. T., Henderson B. E., Wogan G. N., Groopman J. D. 1994; A follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People’s Republic of China. Cancer Epidemiol Biomarkers Prev 3:3–10[PubMed]
    [Google Scholar]
  25. Radonić A., Thulke S., Mackay I. M., Landt O., Siegert W., Nitsche A. 2004; Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862 [View Article][PubMed]
    [Google Scholar]
  26. Reverberi M., Zjalic S., Ricelli A., Punelli F., Camera E., Fabbri C., Picardo M., Fanelli C., Fabbri A. A. 2008; Modulation of antioxidant defense in Aspergillus parasiticus is involved in aflatoxin biosynthesis: a role for the ApyapA gene. Eukaryot Cell 7:988–1000 [View Article][PubMed]
    [Google Scholar]
  27. Sakuda S., Ikeda H., Nakamura T., Kawachi R., Kondo T., Ono M., Sakurada M., Inagaki H., Ito R., Nagasawa H. 2000; Blasticidin A derivatives with highly specific inhibitory activity toward aflatoxin production in Aspergillus parasiticus . J Antibiot (Tokyo) 53:1378–1384 [View Article][PubMed]
    [Google Scholar]
  28. Schmidt-Heydt M., Abdel-Hadi A., Magan N., Geisen R. 2009; Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature. Int J Food Microbiol 135:231–237 [View Article][PubMed]
    [Google Scholar]
  29. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [View Article]
    [Google Scholar]
  30. Shuaib F. M. B., Ehiri J., Abdullahi A., Williams J. H., Jolly P. E. 2010; Reproductive Health Effects of Aflatoxins: A Review of the Literature. Reprod Toxicol 29:262–70. [CrossRef]
    [Google Scholar]
  31. Skory C. D., Chang P. K., Cary J., Linz J. E. 1992; Isolation and characterization of a gene from Aspergillus parasiticus associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis. Appl Environ Microbiol 58:3527–3537[PubMed]
    [Google Scholar]
  32. Sultan Y., Magan N. 2011; Impact of a Streptomyces (AS1) strain and its metabolites on control of Aspergillus flavus and aflatoxin B1 contamination in vitro and in stored peanuts. Biocontrol Sci Technol 21:1437–1455 [View Article]
    [Google Scholar]
  33. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. 2002; Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:H0034 [View Article][PubMed]
    [Google Scholar]
  34. Verheecke C., Liboz T., Darriet M., Sabaou N., Mathieu F. 2014; In vitro interaction of actinomycetes isolates with Aspergillus flavus: impact on aflatoxins B1 and B2 production. Lett Appl Microbiol 58:597–603 [View Article][PubMed]
    [Google Scholar]
  35. Wu F., Guclu H. 2012; Aflatoxin regulations in a network of global maize trade. PLoS ONE 7:e45151 [View Article][PubMed]
    [Google Scholar]
  36. Yan P. S., Song Y., Sakuno E., Nakajima H., Nakagawa H., Yabe K. 2004; Cyclo(l-leucyl-l-prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus . Appl Environ Microbiol 70:7466–7473 [View Article][PubMed]
    [Google Scholar]
  37. Yin Y. N., Yan L. Y., Jiang J. H., Ma Z. H. 2008; Biological control of aflatoxin contamination of crops. J Zhejiang Univ Sci B 9:787–792 [View Article][PubMed]
    [Google Scholar]
  38. Yu J. 2012; Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins (Basel) 4:1024–1057 [View Article][PubMed]
    [Google Scholar]
  39. Zitouni A., Boudjella H., Lamari L., Badji B., Mathieu F., Lebrihi A., Sabaou N. 2005; Nocardiopsis and Saccharothrix genera in Saharan soils in Algeria: isolation, biological activities and partial characterization of antibiotics. Res Microbiol 156:984–993 [View Article][PubMed]
    [Google Scholar]
  40. Zjalic S., Reverberi M., Ricelli A., Mario Granito V., Fanelli C., Adele Fabbri A. 2006; Trametes versicolor: a possible tool for aflatoxin control. Int J Food Microbiol 107:243–249 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000070
Loading
/content/journal/micro/10.1099/mic.0.000070
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error