
f Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments
- Authors: Prince P. Mathai1 , Daniel H. Zitomer2 , James S. Maki1
-
- VIEW AFFILIATIONS
-
1 1Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA 2 2Department of Civil, Construction and Environmental Engineering, Water Quality Center, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
- Correspondence James S. Maki [email protected]
- First Published Online: 01 June 2015, Microbiology 161: 1189-1197, doi: 10.1099/mic.0.000085
- Subject: Environmental Biology
- Received:
- Accepted:
- Cover date:




Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/micro/161/6/1189_mic000085-1.gif
-
In methanogenic habitats, volatile fatty acids (VFA), such as propionate and butyrate, are major intermediates in organic matter degradation. VFA are further metabolized to H2, acetate and CO2 by syntrophic fatty acid-degrading bacteria (SFAB) in association with methanogenic archaea. Despite their indispensable role in VFA degradation, little is known about SFAB abundance and their environmental distribution. To facilitate ecological studies, we developed four novel genus-specific quantitative PCR (qPCR) assays, with primer sets targeting known SFAB: Syntrophobacter, Smithella, Pelotomaculum and Syntrophomonas. Primer set specificity was confirmed using in silico and experimental (target controls, clone libraries and melt-curve analysis) approaches. These qPCR assays were applied to quantify SFAB in a variety of mesophilic methanogenic habitats, including a laboratory propionate enrichment culture, pilot- and full-scale anaerobic reactors, cow rumen, horse faeces, an experimental rice paddy soil, a bog stream and swamp sediments. The highest SFAB 16S rRNA gene copy numbers were found in the propionate enrichment culture and anaerobic reactors, followed by the bog stream and swamp sediment samples. In addition, it was observed that SFAB and methanogen abundance varied with reactor configuration and substrate identity. To our knowledge, this research represents the first comprehensive study to quantify SFAB in methanogenic habitats using qPCR-based methods. These molecular tools will help investigators better understand syntrophic microbial communities in engineered and natural environments.
-
The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences reported in this study are LN650256 to LN650448.
-
Two supplementary figures and one supplementary table are available with the online Supplementary Material.
-
Abbreviations: CSTR continuous stirred-tank reactors SFAB syntrophic fatty acid-degrading bacteria UASB upflow anaerobic sludge blanket VFA volatile fatty acids.
© 2015 The Authors
-
1. Ariesyady H. D., Ito T., Okabe S.. ( 2007a;). Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. . Water Res 41:, 1554––1568. [CrossRef] [PubMed]
-
2. Ariesyady H. D., Ito T., Yoshiguchi K., Okabe S.. ( 2007b;). Phylogenetic and functional diversity of propionate-oxidizing bacteria in an anaerobic digester sludge. . Appl Microbiol Biotechnol 75:, 673––683. [CrossRef] [PubMed]
-
3. Bergman E. N.. ( 1990;). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. . Physiol Rev 70:, 567––590. [PubMed]
-
4. Bouvier T., del Giorgio P. A.. ( 2003;). Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): A quantitative review of published reports. . FEMS Microbiol Ecol 44:, 3––15. [CrossRef] [PubMed]
-
5. Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M. W., other authors. ( 2009;). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. . Clin Chem 55:, 611––622. [CrossRef] [PubMed]
-
6. Chauhan A., Ogram A.. ( 2006;). Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades. . Appl Environ Microbiol 72:, 2400––2406. [CrossRef] [PubMed]
-
7. Chauhan A., Ogram A., Reddy K. R.. ( 2004;). Syntrophic-methanogenic associations along a nutrient gradient in the Florida Everglades. . Appl Environ Microbiol 70:, 3475––3484. [CrossRef] [PubMed]
-
8. Cole J. R., Wang Q., Fish J. A., Chai B., McGarrell D. M., Sun Y., Brown C. T., Porras-Alfaro A., Kuske C. R., Tiedje J. M.. ( 2014;). Ribosomal Database Project: data and tools for high throughput rRNA analysis. . Nucleic Acids Res (41), D633––D642. [CrossRef] [PubMed]
-
9. de Bok F. A. M., Stams A. J. M., Dijkema C., Boone D. R.. ( 2001;). Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. . Appl Environ Microbiol 67:, 1800––1804. [CrossRef] [PubMed]
-
10. Fernandez A. S., Hashsham S. A., Dollhopf S. L., Raskin L., Glagoleva O., Dazzo F. B., Hickey R. F., Criddle C. S., Tiedje J. M.. ( 2000;). Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. . Appl Environ Microbiol 66:, 4058––4067. [CrossRef] [PubMed]
-
11. Gan Y., Qiu Q., Liu P., Rui J., Lu Y.. ( 2012;). Syntrophic oxidation of propionate in rice field soil at 15 and 30 °C under methanogenic conditions. . Appl Environ Microbiol 78:, 4923––4932. [CrossRef] [PubMed]
-
12. Glissmann K., Conrad R.. ( 2000;). Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil. . FEMS Microbiol Ecol 31:, 117––126. [CrossRef] [PubMed]
-
13. Gujer W., Zehnder A. J. B.. ( 1983;). Conversion processes in anaerobic digestion. . Water Sci Technol 15:, 127––167.
-
14. Hansen K. H., Ahring B. K., Raskin L.. ( 1999;). Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization. . Appl Environ Microbiol 65:, 4767––4774. [PubMed]
-
15. Harmsen H. J. M., Kengen H. M. P., Akkermans A. D. L., Stams A. J. M.. ( 1995;). Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichments cultures. . Syst Appl Microbiol 18:, 67––73. [CrossRef]
-
16. Harmsen H. J., Akkermans A. D., Stams A. J., de Vos W. M.. ( 1996;). Population dynamics of propionate-oxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge. . Appl Environ Microbiol 62:, 2163––2168. [PubMed]
-
17. Hashsham S. A., Fernandez A. S., Dollhopf S. L., Dazzo F. B., Hickey R. F., Tiedje J. M., Criddle C. S.. ( 2000;). Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose. . Appl Environ Microbiol 66:, 4050––4057. [CrossRef] [PubMed]
-
18. Hatamoto M., Imachi H., Ohashi A., Harada H.. ( 2007;). Identification and cultivation of anaerobic, syntrophic long-chain fatty acid-degrading microbes from mesophilic and thermophilic methanogenic sludges. . Appl Environ Microbiol 73:, 1332––1340. [CrossRef] [PubMed]
-
19. Hori T., Haruta S., Ueno Y., Ishii M., Igarashi Y.. ( 2006;). Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. . Appl Environ Microbiol 72:, 1623––1630. [CrossRef] [PubMed]
-
20. Imachi H., Sekiguchi Y., Kamagata Y., Loy A., Qiu Y. L., Hugenholtz P., Kimura N., Wagner M., Ohashi A., Harada H.. ( 2006;). Non-sulfate-reducing, syntrophic bacteria affiliated with desulfotomaculum cluster I are widely distributed in methanogenic environments. . Appl Environ Microbiol 72:, 2080––2091. [CrossRef] [PubMed]
-
21. Ito T., Yoshiguchi K., Ariesyady H. D., Okabe S.. ( 2012;). Identification and quantification of key microbial trophic groups of methanogenic glucose degradation in an anaerobic digester sludge. . Bioresour Technol 123:, 599––607. [CrossRef] [PubMed]
-
22. Juottonen H., Galand P. E., Tuittila E. S., Laine J., Fritze H., Yrjälä K.. ( 2005;). Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. . Environ Microbiol 7:, 1547––1557. [CrossRef] [PubMed]
-
23. Krylova N. I., Janssen P. H., Conrad R.. ( 1997;). Turnover of propionate in methanogenic paddy soil. . FEMS Microbiol Ecol 23:, 107––117. [CrossRef]
-
24. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947––2948. [CrossRef] [PubMed]
-
25. Liu P., Qiu Q., Lu Y.. ( 2011;). Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil. . Appl Environ Microbiol 77:, 3884––3887. [CrossRef] [PubMed]
-
26. Lovley D. R., Klug M. J.. ( 1982;). Intermediary metabolism of organic matter in the sediments of a eutrophic lake. . Appl Environ Microbiol 43:, 552––560. [PubMed]
-
27. Lueders T., Pommerenke B., Friedrich M. W.. ( 2004;). Stable-isotope probing of micro-organisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. . Appl Environ Microbiol 70:, 5778––5786. [CrossRef] [PubMed]
-
28. Mackie R. I., Wilkins C. A.. ( 1988;). Enumeration of anaerobic bacterial microflora of the equine gastrointestinal tract. . Appl Environ Microbiol 54:, 2155––2160. [PubMed]
-
29. McCarty P. L., Smith D. P.. ( 1986;). Anaerobic wastewater treatment. . Environ Sci Technol 20:, 1200––1206. [CrossRef]
-
30. McInerney M. J., Mackie R. I., Bryant M. P.. ( 1981;). Syntrophic association of a butyrate-degrading bacterium and methanosarcina enriched from bovine rumen fluid. . Appl Environ Microbiol 41:, 826––828. [PubMed]
-
31. McInerney M. J., Struchtemeyer C. G., Sieber J., Mouttaki H., Stams A. J., Schink B., Rohlin L., Gunsalus R. P.. ( 2008;). Physiology, ecology, phylogeny, and genomics of micro-organisms capable of syntrophic metabolism. . Ann N Y Acad Sci 1125:, 58––72. [CrossRef] [PubMed]
-
32. McMahon K. D., Zheng D., Stams A. J., Mackie R. I., Raskin L.. ( 2004;). Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. . Biotechnol Bioeng 87:, 823––834. [CrossRef] [PubMed]
-
33. Morris R., Schauer-Gimenez A., Bhattad U., Kearney C., Struble C. A., Zitomer D., Maki J. S.. ( 2014;). Methyl coenzyme M reductase (mcrA) gene abundance correlates with activity measurements of methanogenic H2/CO2-enriched anaerobic biomass. . Microb Biotechnol 7:, 77––84. [CrossRef] [PubMed]
-
34. Muyzer G., de Waal E. C., Uitterlinden A. G.. ( 1993;). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. . Appl Environ Microbiol 59:, 695––700. [PubMed]
-
35. Narihiro T., Terada T., Ohashi A., Kamagata Y., Nakamura K., Sekiguchi Y.. ( 2012;). Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method. . Water Res 46:, 2167––2175. [CrossRef] [PubMed]
-
36. Narihiro T., Nobu M. K., Kim N. K., Kamagata Y., Liu W. T.. ( 2015;). The nexus of syntrophy-associated microbiota in anaerobic digestion revealed by long-term enrichment and community survey. . Environ Microbiol 17:, 1707––1720. [CrossRef] [PubMed]
-
37. Power M. E., Tilman D., Estes J. A., Menge B. A., Bond W. J., Mills L. S., Daily G., Castilla J. C., Lubchenco J., Paine R.. ( 1996;). Challenges in the quest for keystones. . Bioscience 46:, 609––620. [CrossRef]
-
38. Russell J. B., Hespell R. B.. ( 1981;). Microbial rumen fermentation. . J Dairy Sci 64:, 1153––1169. [CrossRef] [PubMed]
-
39. Schauer-Gimenez A. E., Zitomer D. H., Maki J. S., Struble C. A.. ( 2010;). Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure. . Water Res 44:, 3555––3564. [CrossRef] [PubMed]
-
40. Scheid D., Stubner S.. ( 2001;). Structure and diversity of Gram-negative sulfate-reducing bacteria on rice roots. . FEMS Microbiol Ecol 36:, 175––183. [CrossRef] [PubMed]
-
41. Schink B.. ( 1997;). Energetics of syntrophic cooperation in methanogenic degradation. . Microbiol Mol Biol Rev 61:, 262––280. [PubMed]
-
42. Schink B., Stams A. J. M.. ( 2002;). Syntrophism among Prokaryotes. . The Prokaryotes 2:, 309––335.
-
43. Schink B., Thauer R. K.. ( 1988;). Energetics of syntrophic methane formation and the influence of aggregation. . In Granular Anaerobic Sludge, Microbiology and Technology, pp. 5––17. Edited by Lettinga G., Zehnder A. J. B., Grotenhuis J. T. C., Hulshoff-Pol L. W... Wageningen, The Netherlands:: Pudoc;.
-
44. Scholten J. C., Stams A. J.. ( 1995;). The effect of sulfate and nitrate on methane formation in a freshwater sediment. . Antonie van Leeuwenhoek 68:, 309––315. [CrossRef] [PubMed]
-
45. Shigematsu T., Era S., Mizuno Y., Ninomiya K., Kamegawa Y., Morimura S., Kida K.. ( 2006;). Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. . Appl Microbiol Biotechnol 72:, 401––415. [CrossRef] [PubMed]
-
46. Smith C. J., Osborn A. M.. ( 2009;). Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. . FEMS Microbiol Ecol 67:, 6––20. [CrossRef] [PubMed]
-
47. Smith C. J., Nedwell D. B., Dong L. F., Osborn A. M.. ( 2006;). Evaluation of quantitative polymerase chain reaction-based approaches for determining gene copy and gene transcript numbers in environmental samples. . Environ Microbiol 8:, 804––815. [CrossRef] [PubMed]
-
48. Sorensen A. H., Ahring B. K.. ( 1993;). Measurements of the specific methanogenic activity of anaerobic digestor biomass. . Appl Microbiol Biotechnol 40:, 427––443.
-
49. Sousa D. Z., Pereira M. A., Stams A. J., Alves M. M., Smidt H.. ( 2007;). Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. . Appl Environ Microbiol 73:, 1054––1064. [CrossRef] [PubMed]
-
50. Stams A. J., Sousa D. Z., Kleerebezem R., Plugge C. M.. ( 2012;). Role of syntrophic microbial communities in high-rate methanogenic bioreactors. . Water Sci Technol 66:, 352––362. [CrossRef] [PubMed]
-
51. Sundberg C., Al-Soud W. A., Larsson M., Alm E., Yekta S. S., Svensson B. H., Sørensen S. J., Karlsson A.. ( 2013;). 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. . FEMS Microbiol Ecol 85:, 612––626. [CrossRef] [PubMed]
-
52. Tale V. P., Maki J. S., Struble C. A., Zitomer D. H.. ( 2011;). Methanogen community structure-activity relationship and bioaugmentation of overloaded anaerobic digesters. . Water Res 45:, 5249––5256. [CrossRef] [PubMed]
-
53. Tang Y. Q., Shigematsu T., Morimura S., Kida K.. ( 2007;). Effect of dilution rate on the microbial structure of a mesophilic butyrate-degrading methanogenic community during continuous cultivation. . Appl Microbiol Biotechnol 75:, 451––465. [CrossRef] [PubMed]
-
54. Thauer R. K., Jungermann K., Decker K.. ( 1977;). Energy conservation in chemotrophic anaerobic bacteria. . Bacteriol Rev 41:, 100––180. [PubMed]
-
55. Wang Q., Garrity G. M., Tiedje J. M., Cole J. R.. ( 2007;). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. . Appl Environ Microbiol 73:, 5261––5267. [CrossRef] [PubMed]
-
56. Yu Y., Lee C., Kim J., Hwang S.. ( 2005;). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. . Biotechnol Bioeng 89:, 670––679. [CrossRef] [PubMed]
-
57. Yu Y., Kim J., Hwang S.. ( 2006;). Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. . Biotechnol Bioeng 93:, 424––433. [CrossRef] [PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/micro/10.1099/mic.0.000085dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/micro AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/micro/10.1099/mic.0.000085dcterms_title,dcterms_subject-pub_serialIdent:journal/micro AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....