1887

Abstract

Expression of the lysis cassette () from the defective lambdoid prophage at the 12th minute of genome (DLP12) is required in some strains for proper curli expression and biofilm formation. Regulating production of the lytic enzymes encoded by these genes is critical for maintaining cell wall integrity. In lambdoid phages, late-gene regulation is mediated by the vegetative sigma factor RpoD and the lambda antiterminator Q. We previously demonstrated that DLP12 contains a Q-like protein (Q) that positively regulates transcription of the lysis cassette, but the sigma factor responsible for this transcription initiation remained to be elucidated. analysis of revealed the presence of a putative − 35 and − 10 sigma site recognized by the extracytoplasmic stress response sigma factor, RpoE. In this work, we report that RpoE overexpression promoted transcription from and using purified RNAP. We demonstrate that the − 35 region is important for RpoE binding and that this region is also important for Q-mediated transcription of . A bacterial two-hybrid assay indicated that Q and RpoE physically interact , consistent with what is seen for Q and RpoD. We propose that RpoE regulates transcription of the DLP12 lysis genes through interaction with Q and that proper expression is dependent on an intact − 35 sigma region in . This work provides evidence that the unique Q-dependent regulatory mechanism of lambdoid phages has been co-opted by harbouring defective DLP12 and has been integrated into the tightly controlled RpoE regulon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000115
2015-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/8/1683.html?itemId=/content/journal/micro/10.1099/mic.0.000115&mimeType=html&fmt=ahah

References

  1. Barondess J.J., Beckwith J. 1995; bor gene of phage lambda, involved in serum resistance, encodes a widely conserved outer membrane lipoprotein. J Bacteriol 177:1247–1253[PubMed]
    [Google Scholar]
  2. Berry J., Summer E.J., Struck D.K., Young R. 2008; The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. Mol Microbiol 70:341–351 doi:10.1111/j.1365-2958.2008.06408.x [PubMed] [CrossRef]
    [Google Scholar]
  3. Binnenkade L., Teichmann L., Thormann K.M. 2014; Iron triggers λSo prophage induction and release of extracellular DNA in Shewanella oneidensis MR-1 biofilms. Appl Environ Microbiol 80:5304–5316 [CrossRef]
    [Google Scholar]
  4. Boyd E.F., Davis B.M., Hochhut B. 2001; Bacteriophage–bacteriophage interactions in the evolution of pathogenic bacteria. Trends Microbiol 9:137–144 [CrossRef]
    [Google Scholar]
  5. Brüssow H., Canchaya C., Hardt W.D. 2004; Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602 [CrossRef]
    [Google Scholar]
  6. Canchaya C., Fournous G., Brüssow H. 2004; The impact of prophages on bacterial chromosomes. Mol Microbiol 53:9–18 [CrossRef]
    [Google Scholar]
  7. Casjens S. 2003; Prophages and bacterial genomics: what have we learned so far?. Mol Microbiol 49:277–300 [CrossRef]
    [Google Scholar]
  8. Chikova A.K., Schaaper R.M. 2006; Mutator and antimutator effects of the bacteriophage P1 hot gene product. J Bacteriol 188:5831–5838 [CrossRef]
    [Google Scholar]
  9. Deighan P., Hochschild A. 2007; The bacteriophage λQ anti-terminator protein regulates late gene expression as a stable component of the transcription elongation complex. Mol Microbiol 63:911–920 doi:10.1111/j.1365-2958.2006.05563.x [PubMed] [CrossRef]
    [Google Scholar]
  10. Deighan P., Diez C.M., Leibman M., Hochschild A., Nickels B.E. 2008; The bacteriophage λ Q antiterminator protein contacts the β-flap domain of RNA polymerase. Proc Natl Acad Sci U S A 105:15305–15310 doi:10.1073/pnas.0805757105 [PubMed] [CrossRef]
    [Google Scholar]
  11. Dove S.L., Hochschild A. 2004; A bacterial two-hybrid system based on transcription activation. Methods Mol Biol 261:231–246
    [Google Scholar]
  12. Edlin G., Tait R.C., Rodriguez R.L. 1984; A bacteriophage λ cohesive ends (cos) DNA fragment enhances the fitness of plasmid-containing bacteria growing in energy-limited chemostats. Nature Biotechnol 2:251–254 doi:10.1038/nbt0384-251 [CrossRef]
    [Google Scholar]
  13. Feliciello I., Chinali G. 1993; A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli . Anal Biochem 212:394–401 [CrossRef]
    [Google Scholar]
  14. Forde S.E., Thompson J.N., Holt R.D., Bohannan B.J. 2008; Coevolution drives temporal changes in fitness and diversity across environments in a bacteria-bacteriophage interaction. Evolution 62:1830–1839[PubMed]
    [Google Scholar]
  15. Giovannoni S.J., Cameron Thrash J., Temperton B. 2014; Implications of streamlining theory for microbial ecology. ISME J 8:1553–1565 doi:10.1038/ismej.2014.60 [PubMed] [CrossRef]
    [Google Scholar]
  16. Gödeke J., Paul K., Lassak J., Thormann K.M. 2011; Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. ISME J 5:613–626 doi:10.1038/ismej.2010.153 [PubMed] [CrossRef]
    [Google Scholar]
  17. Guo J., Roberts J.W. 2004; DNA binding regions of Q proteins of phages λ and ϕ80. J Bacteriol 186:3599–3608 doi:10.1128/JB.186.11.3599-3608.2004 [PubMed] [CrossRef]
    [Google Scholar]
  18. Hager D.A., Jin D.J., Burgess R.R. 1990; Use of mono Q high-resolution ion-exchange chromatography to obtain highly pure and active Escherichia coli RNA polymerase. Biochemistry 29:7890–7894 doi:10.1021/bi00486a016 [PubMed] [CrossRef]
    [Google Scholar]
  19. Hamilton J.J., Marlow V.L., Owen R.A., Costa M.A., Guo M., Buchanan G., Chandra G., Trost M., Coulthurst S.J., other authors. 2014; A holin and an endopeptidase are essential for chitinolytic protein secretion in Serratia marcescens . J Cell Biol 207:615–626 doi:10.1083/jcb.201404127 [PubMed] [CrossRef]
    [Google Scholar]
  20. Hu J.C., Kornacker M.G., Hochschild A. 2000; Escherichia coli one- and two-hybrid systems for the analysis and identification of protein–protein interactions. Methods 20:80–94 doi:10.1006/meth.1999.0908 [PubMed] [CrossRef]
    [Google Scholar]
  21. Hung C., Marschall J., Burnham C.-A.D., Byun A.S., Henderson J.P. 2014; The bacterial amyloid curli is associated with urinary source bloodstream infection. PLoS One 9:e86009 doi:10.1371/journal.pone.0086009 [PubMed] [CrossRef]
    [Google Scholar]
  22. Lindsey D.F., Mullin D.A., Walker J.R. 1989; Characterization of the cryptic lambdoid prophage DLP12 of Escherichia coli and overlap of the DLP12 integrase gene with the tRNA gene argU . J Bacteriol 171:6197–6205[PubMed]
    [Google Scholar]
  23. Lynch M. 2006; Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 60:327–349 doi:10.1146/annurev.micro.60.080805.142300 [PubMed] [CrossRef]
    [Google Scholar]
  24. Menouni R., Champ S., Espinosa L., Boudvillain M., Ansaldi M. 2013; Transcription termination controls prophage maintenance in Escherichia coli genomes. Proc Natl Acad Sci U S A 110:14414–14419 doi:10.1073/pnas.1303400110 [PubMed] [CrossRef]
    [Google Scholar]
  25. Nakamura Y., Kurihara T., Saito H., Uchida H. 1979; Sigma subunit of Escherichia coli RNA polymerase affects the function of lambda N gene. Proc Natl Acad Sci U S A 76:4593–4597 doi:10.1073/pnas.76.9.4593 [PubMed] [CrossRef]
    [Google Scholar]
  26. Nickels B.E. 2009; Genetic assays to define and characterize protein–protein interactions involved in gene regulation. Methods 47:53–62 doi:10.1016/j.ymeth.2008.10.011 [PubMed] [CrossRef]
    [Google Scholar]
  27. Nickels B.E., Roberts C.W., Sun H., Roberts J.W., Hochschild A. 2002; The σ70 subunit of RNA polymerase is contacted by the λQ antiterminator during early elongation. Mol Cell 10:611–622 doi:10.1016/S1097-2765(02)00648-2 [PubMed] [CrossRef]
    [Google Scholar]
  28. O'Brien A.D., LaVeck G.D., Thompson M.R., Formal S.B. 1982; Production of Shigella dysenteriae type 1-like cytotoxin by Escherichia coli . J Infect Dis 146:763–769 doi:10.1093/infdis/146.6.763 [PubMed] [CrossRef]
    [Google Scholar]
  29. Oppenheim A.B., Kobiler O., Stavans J., Court D.L., Adhya S. 2005; Switches in bacteriophage lambda development. Annu Rev Genet 39:409–429 doi:10.1146/annurev.genet.39.073003.113656 [PubMed] [CrossRef]
    [Google Scholar]
  30. Pal C., Maciá M.D., Oliver A., Schachar I., Buckling A. 2007; Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450:1079–1081 doi:10.1038/nature06350 [PubMed] [CrossRef]
    [Google Scholar]
  31. Rhodius V.A., Suh W.C., Nonaka G., West J., Gross C.A. 2006; Conserved and variable functions of the σE stress response in related genomes. PLoS Biol 4:e2 doi:10.1371/journal.pbio.0040002 [PubMed] [CrossRef]
    [Google Scholar]
  32. Rice S.A., Tan C.H., Mikkelsen P.J., Kung V., Woo J., Tay M., Hauser A., McDougald D., Webb J.S., Kjelleberg S. 2009; The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3:271–282 doi:10.1038/ismej.2008.109 [PubMed] [CrossRef]
    [Google Scholar]
  33. Roucourt B., Lavigne R. 2009; The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. Environ Microbiol 11:2789–2805 doi:10.1111/j.1462-2920.2009.02029.x [PubMed] [CrossRef]
    [Google Scholar]
  34. Rouvière P.E., De Las Peñas A., Mecsas J., Lu C.Z., Rudd K.E., Gross C.A. 1995; rpoE, the gene encoding the second heat-shock sigma factor, σE, in Escherichia coli . EMBO J 14:1032–1042
    [Google Scholar]
  35. Rueggeberg K.G., Toba F.A., Thompson M.G., Campbell B.R., Hay A.G. 2013; A Q-like transcription factor regulates biofilm development in Escherichia coli by controlling expression of the DLP12 lysis cassette. Microbiology 159:691–700 doi:10.1099/mic.0.064741-0 [PubMed] [CrossRef]
    [Google Scholar]
  36. Salazar O., Asenjo J.A. 2007; Enzymatic lysis of microbial cells. Biotechnol Lett 29:985–994 doi:10.1007/s10529-007-9345-2 [PubMed] [CrossRef]
    [Google Scholar]
  37. Schmieger H., Schicklmaier P. 1999; Transduction of multiple drug resistance of Salmonella enterica serovar Typhimurium DT104. FEMS Microbiol Lett 170:251–256 doi:10.1111/j.1574-6968.1999.tb13381.x [PubMed] [CrossRef]
    [Google Scholar]
  38. Strockbine N.A., Jackson M.P., Sung L.M., Holmes R.K., O'Brien A.D. 1988; Cloning and sequencing of the genes for Shiga toxin from Shigella dysenteriae type 1. J Bacteriol 170:1116–1122[PubMed]
    [Google Scholar]
  39. Sukchawalit R., Vattanaviboon P., Sallabhan R., Mongkolsuk S. 1999; Construction and characterization of regulated l-arabinose-inducible broad host range expression vectors in Xanthomonas . FEMS Microbiol Lett 181:217–223[PubMed]
    [Google Scholar]
  40. Tenover F.C. 2006; Mechanisms of antimicrobial resistance in bacteria. Am J Med 119:Suppl 1 S3-S10 discussion. doi:10.1016/j.amjmed.2006.03.011 [PubMed] [CrossRef]
    [Google Scholar]
  41. Toba F.A., Thompson M.G., Campbell B.R., Junker L.M., Rueggeberg K.G., Hay A.G. 2011; Role of DLP12 lysis genes in Escherichia coli biofilm formation. Microbiology 157:1640–1650 doi:10.1099/mic.0.045161-0 [PubMed] [CrossRef]
    [Google Scholar]
  42. Vaca Pacheco S., García González O., Paniagua Contreras G.L. 1997; The lom gene of bacteriophage lambda is involved in Escherichia coli K12 adhesion to human buccal epithelial cells. FEMS Microbiol Lett 156:129–132 doi:10.1016/S0378-1097(97)00415-1 [PubMed] [CrossRef]
    [Google Scholar]
  43. Vidal O., Longin R., Prigent-Combaret C., Dorel C., Hooreman M., Lejeune P. 1998; Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449
    [Google Scholar]
  44. Vorobiev S.M., Gensler Y., Vahedian-Movahed H., Seetharaman J., Su M., Huang J.Y., Xiao R., Kornhaber G., Montelione G.T., other authors. 2014; Structure of the DNA-binding and RNA-polymerase-binding region of transcription antitermination factor λQ. Structure 22:488–495 doi:10.1016/j.str.2013.12.010 [PubMed] [CrossRef]
    [Google Scholar]
  45. Wang X., Kim Y., Ma Q., Hong S.H., Pokusaeva K., Sturino J.M., Wood T.K. 2010; Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1:147 doi:10.1038/ncomms1146 [PubMed] [CrossRef]
    [Google Scholar]
  46. Webb J.S., Lau M., Kjelleberg S. 2004; Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 186:8066–8073 doi:10.1128/JB.186.23.8066-8073.2004 [PubMed] [CrossRef]
    [Google Scholar]
  47. Young I., Wang I., Roof W.D. 2000; Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128 doi:10.1016/S0966-842X(00)01705-4 [PubMed] [CrossRef]
    [Google Scholar]
  48. Zhou Y., Shi T., Mozola M.A., Olson E.R., Henthorn K., Brown S., Gussin G.N., Friedman D.I. 2006; Evidence that the promoter can influence assembly of antitermination complexes at downstream RNA sites. J Bacteriol 188:2222–2232 doi:10.1128/JB.188.6.2222-2232.2006 [PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000115
Loading
/content/journal/micro/10.1099/mic.0.000115
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error