1887

Abstract

The putative zinc exporters ZntA (a P-type ATPase) and ZntB (2-TM-GxN family) in were characterized. The expression of the gene is inducible by CdCl, ZnCl and CoCl, of which CdCl is the most potent inducer, whereas is constitutively expressed. The metal-induced expression of is controlled by the MerR-like regulator ZntR. The and mutants were highly sensitive to CdCl and ZnCl, and CoCl sensitivity was demonstrated to a lesser extent. By contrast, the mutant showed similar levels of metal resistance to the WT strain. Even in the mutant background, did not play an apparent role in metal resistance under the conditions tested. The inactivation of increased the accumulation of intracellular cadmium and zinc, and conferred hyper-resistance to HO. Thus, the metal transporter ZntA and its regulator ZntR are important for controlling zinc homeostasis and cadmium and cobalt detoxification. The loss of either the or gene did not affect the virulence of in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000135
2015-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/9/1730.html?itemId=/content/journal/micro/10.1099/mic.0.000135&mimeType=html&fmt=ahah

References

  1. Akanuma G., Nanamiya H., Natori Y., Nomura N., Kawamura F. 2006; Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis . J Bacteriol 188:2715–2720 [View Article][PubMed]
    [Google Scholar]
  2. Alexeyev M. F. 1999; The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of Gram-negative bacteria. Biotechniques 26:824–826 828
    [Google Scholar]
  3. Angelosi G. A., Abest E., Martinetti G., Nester E. W. 1991; Genetic analysis of Agrobacterium . Methods Enzymol 204:384–397 [View Article][PubMed]
    [Google Scholar]
  4. Ansari A. Z., Bradner J. E., O'Halloran T. V. 1995; DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374:370–375 [View Article][PubMed]
    [Google Scholar]
  5. Beard S. J., Hashim R., Membrillo-Hernández J., Hughes M. N., Poole R. K. 1997; Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol Microbiol 25:883–891 [View Article][PubMed]
    [Google Scholar]
  6. Beers R. F. Jr, Sizer I. W. 1952; A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140
    [Google Scholar]
  7. Bhubhanil S., Chamsing J., Sittipo P., Chaoprasid P., Sukchawalit R., Mongkolsuk S. 2014a; Roles of Agrobacterium tumefaciens membrane-bound ferritin (MbfA) in iron transport and resistance to iron under acidic conditions. Microbiology 160:863–871 [View Article][PubMed]
    [Google Scholar]
  8. Bhubhanil S., Niamyim P., Sukchawalit R., Mongkolsuk S. 2014b; Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens . Microbiology 160:79–90 [View Article][PubMed]
    [Google Scholar]
  9. Bhubhanil S., Sittipo P., Chaoprasid P., Nookabkaew S., Sukchawalit R., Mongkolsuk S. 2014c; Control of zinc homeostasis in Agrobacterium tumefaciens via zur and the zinc uptake genes znuABC and zinT . Microbiology 160:2452–2463 [View Article][PubMed]
    [Google Scholar]
  10. Binet M. R., Poole R. K. 2000; Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli . FEBS Lett 473:67–70 [View Article][PubMed]
    [Google Scholar]
  11. Blencowe D. K., Morby A. P. 2003; Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311 [View Article][PubMed]
    [Google Scholar]
  12. Brenot A., Weston B. F., Caparon M. G. 2007; A PerR-regulated metal transporter (PmtA) is an interface between oxidative stress and metal homeostasis in Streptococcus pyogenes . Mol Microbiol 63:1185–1196 [View Article][PubMed]
    [Google Scholar]
  13. Brocklehurst K. R., Hobman J. L., Lawley B., Blank L., Marshall S. J., Brown N. L., Morby A. P. 1999; ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli . Mol Microbiol 31:893–902 [View Article][PubMed]
    [Google Scholar]
  14. Cerasi M., Liu J. Z., Ammendola S., Poe A. J., Petrarca P., Pesciaroli M., Pasquali P., Raffatellu M., Battistoni A. 2014; The ZupT transporter plays an important role in zinc homeostasis and contributes to Salmonella enterica virulence. Metallomics 6:845–853 [View Article][PubMed]
    [Google Scholar]
  15. Cubillas C., Vinuesa P., Tabche M. L., García-de los Santos A. 2013; Phylogenomic analysis of cation siffusion facilitator proteins uncovers Ni2+/Co2+ transporters. Metallomics 5:1634–1643 [View Article][PubMed]
    [Google Scholar]
  16. Fones H., Preston G. M. 2013; The impact of transition metals on bacterial plant disease. FEMS Microbiol Rev 37:495–519 [View Article][PubMed]
    [Google Scholar]
  17. Gaballa A., Helmann J. D. 2002; A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis . Mol Microbiol 45:997–1005 [View Article][PubMed]
    [Google Scholar]
  18. Gabriel S. E., Helmann J. D. 2009; Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions. J Bacteriol 191:6116–6122 [View Article][PubMed]
    [Google Scholar]
  19. Grant S. G., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649 [View Article][PubMed]
    [Google Scholar]
  20. Hantke K. 2005; Bacterial zinc uptake and regulators. Curr Opin Microbiol 8:196–202 [View Article][PubMed]
    [Google Scholar]
  21. Harel R., Chevion M. 1991; Zinc(II) protects against metal-mediated free radical induced damage: studies on single and double-strand DNA breakage. Free Radic Res Commun 13:509–515 [View Article][PubMed]
    [Google Scholar]
  22. Harley C. B., Reynolds R. P. 1987; Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361 [View Article][PubMed]
    [Google Scholar]
  23. Hobman J. L., Julian D. J., Brown N. L. 2012; Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34. BMC Microbiol 12:109 [View Article][PubMed]
    [Google Scholar]
  24. Hwang I., Cook D. M., Farrand S. K. 1995; A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer. J Bacteriol 177:449–458[PubMed]
    [Google Scholar]
  25. Kamoun S., Hamada W., Huitema E. 2003; Agrosuppression: a bioassay for the hypersensitive response suited to high-throughput screening. Mol Plant Microbe Interact 16:7–13 [View Article][PubMed]
    [Google Scholar]
  26. Khan S., Brocklehurst K. R., Jones G. W., Morby A. P. 2002; The functional analysis of directed amino-acid alterations in ZntR from Escherichia coli . Biochem Biophys Res Commun 299:438–445 [View Article][PubMed]
    [Google Scholar]
  27. Kitphati W., Ngok-Ngam P., Suwanmaneerat S., Sukchawalit R., Mongkolsuk S. 2007; Agrobacterium tumefaciens fur has important physiological roles in iron and manganese homeostasis, the oxidative stress response, and full virulence. Appl Environ Microbiol 73:4760–4768 [View Article][PubMed]
    [Google Scholar]
  28. Knoop V., Groth-Malonek M., Gebert M., Eifler K., Weyand K. 2005; Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol Genet Genomics 274:205–216 [View Article][PubMed]
    [Google Scholar]
  29. Korbashi P., Katzhendler J., Saltman P., Chevion M. 1989; Zinc protects Escherichia coli against copper-mediated paraquat-induced damage. J Biol Chem 264:8479–8482[PubMed]
    [Google Scholar]
  30. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [View Article][PubMed]
    [Google Scholar]
  31. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  32. Lund P. A., Ford S. J., Brown N. L. 1986; Transcriptional regulation of the mercury-resistance genes of transposon Tn501 . J Gen Microbiol 132:465–480[PubMed]
    [Google Scholar]
  33. Luo Z. Q., Clemente T. E., Farrand S. K. 2001; Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol Plant Microbe Interact 14:98–103 [View Article][PubMed]
    [Google Scholar]
  34. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., Wanner B. L. 1996; Conditionally replicative and conjugative plasmids carrying lacZ for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1–13 [View Article][PubMed]
    [Google Scholar]
  35. Nanamiya H., Akanuma G., Natori Y., Murayama R., Kosono S., Kudo T., Kobayashi K., Ogasawara N., Park S. M., other authors. 2004; Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol Microbiol 52:273–283 [View Article][PubMed]
    [Google Scholar]
  36. Ngok-Ngam P., Ruangkiattikul N., Mahavihakanont A., Virgem S. S., Sukchawalit R., Mongkolsuk S. 2009; Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence. J Bacteriol 191:2083–2090 [View Article][PubMed]
    [Google Scholar]
  37. Nies D. H. 2003; Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339 [View Article][PubMed]
    [Google Scholar]
  38. Nies D. H. 2007; Biochemistry. How cells control zinc homeostasis. Science 317:1695–1696 [View Article][PubMed]
    [Google Scholar]
  39. Outten C. E., Outten F. W., O'Halloran T. V. 1999; DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli . J Biol Chem 274:37517–37524 [View Article][PubMed]
    [Google Scholar]
  40. Parkhill J., Brown N. L. 1990; Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. Nucleic Acids Res 18:5157–5162 [View Article][PubMed]
    [Google Scholar]
  41. Patzer S. I., Hantke K. 1998; The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli . Mol Microbiol 28:1199–1210 [View Article][PubMed]
    [Google Scholar]
  42. Petrarca P., Ammendola S., Pasquali P., Battistoni A. 2010; The Zur-regulated ZinT protein is an auxiliary component of the high-affinity ZnuABC zinc transporter that facilitates metal recruitment during severe zinc shortage. J Bacteriol 192:1553–1564 [View Article][PubMed]
    [Google Scholar]
  43. Rensing C., Mitra B., Rosen B. P. 1997; The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A 94:14326–14331 [View Article][PubMed]
    [Google Scholar]
  44. Rensing C., Sun Y., Mitra B., Rosen B. P. 1998; Pb(II)-translocating P-type ATPases. J Biol Chem 273:32614–32617 [View Article][PubMed]
    [Google Scholar]
  45. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Sein-Echaluce V. C., González A., Napolitano M., Luque I., Barja F., Peleato M. L., Fillat M. F. 2015; Zur (FurB) is a key factor in the control of the oxidative stress response in Anabaena sp PCC 7120 . Environ Microbiol 17:2006–2017 [View Article][PubMed]
    [Google Scholar]
  47. Shin J. H., Oh S. Y., Kim S. J., Roe J. H. 2007; The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J Bacteriol 189:4070–4077 [View Article][PubMed]
    [Google Scholar]
  48. Singh V. K., Xiong A., Usgaard T. R., Chakrabarti S., Deora R., Misra T. K., Jayaswal R. K. 1999; ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus . Mol Microbiol 33:200–207 [View Article][PubMed]
    [Google Scholar]
  49. Smith R. L., Maguire M. E. 1998; Microbial magnesium transport: unusual transporters searching for identity. Mol Microbiol 28:217–226 [View Article][PubMed]
    [Google Scholar]
  50. Smith K. F., Bibb L. A., Schmitt M. P., Oram D. M. 2009; Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae . J Bacteriol 191:1595–1603 [View Article][PubMed]
    [Google Scholar]
  51. Smith A. T., Smith K. P., Rosenzweig A. C. 2014; Diversity of the metal-transporting P1B-type ATPases. J Biol Inorg Chem 19:947–960 [View Article][PubMed]
    [Google Scholar]
  52. Snavely M. D., Florer J. B., Miller C. G., Maguire M. E. 1989; Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems. J Bacteriol 171:4761–4766[PubMed]
    [Google Scholar]
  53. Stoyanov J. V., Hobman J. L., Brown N. L. 2001; CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–512 [View Article][PubMed]
    [Google Scholar]
  54. Wan Q., Ahmad M. F., Fairman J., Gorzelle B., de la Fuente M., Dealwis C., Maguire M. E. 2011; X-ray crystallography and isothermal titration calorimetry studies of the Salmonella zinc transporter ZntB. Structure 19:700–710 [View Article][PubMed]
    [Google Scholar]
  55. Wojtaszek P. 1997; Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692[PubMed] [CrossRef]
    [Google Scholar]
  56. Wood D. W., Setubal J. C., Kaul R., Monks D. E., Kitajima J. P., Okura V. K., Zhou Y., Chen L., Wood G. E., other authors. 2001; The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323 [View Article][PubMed]
    [Google Scholar]
  57. Worlock A. J., Smith R. L. 2002; ZntB is a novel Zn2+ transporter in Salmonella enterica serovar Typhimurium. J Bacteriol 184:4369–4373 [View Article][PubMed]
    [Google Scholar]
  58. Xiong A., Jayaswal R. K. 1998; Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus . J Bacteriol 180:4024–4029[PubMed]
    [Google Scholar]
  59. Yang W., Liu Y., Chen L., Gao T., Hu B., Zhang D., Liu F. 2007; Zinc uptake regulator (zur) gene involved in zinc homeostasis and virulence of Xanthomonas oryzae pv. oryzae in rice. Curr Microbiol 54:307–314 [View Article][PubMed]
    [Google Scholar]
  60. Zhu J., Oger P. M., Schrammeijer B., Hooykaas P. J., Farrand S. K., Winans S. C. 2000; The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000135
Loading
/content/journal/micro/10.1099/mic.0.000135
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error