
f The Fur homologue BosR requires Arg39 to activate rpoS transcription in Borrelia burgdorferi and thereby direct spirochaete infection in mice
- By Laura I. Katona1
-
- VIEW AFFILIATIONS
-
1 Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Correspondence Laura I. Katona [email protected]
- First Published Online: 01 November 2015, Microbiology 161: 2243-2255, doi: 10.1099/mic.0.000166
- Subject: Regulation
- Received:
- Accepted:
- Revised:
- Cover date:




The Fur homologue BosR requires Arg39 to activate rpoS transcription in Borrelia burgdorferi and thereby direct spirochaete infection in mice, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/micro/161/11/2243_mic000166-1.gif
-
Borrelia burgdorferi is the causative agent of Lyme disease. In B. burgdorferi, RpoS controls the expression of virulence genes needed for mammalian infection. The Fur homologue BosR regulates the transcription of rpoS and therefore BosR determines, albeit indirectly, the infection status of the spirochaete. Transcription of rpoS in B. burgdorferi is complex: rpoS can be transcribed either from an RpoD-dependent promoter to yield a long transcript or from an RpoN-dependent promoter to yield a short transcript. This study shows that BosR repressed synthesis of the long transcript while at the same time activating synthesis of the short transcript. How BosR does this is unclear. To address this, spirochaetes were engineered to express either BosR or the naturally occurring variant BosRR39K. Mice became infected by the spirochaetes expressing BosR but not by the spirochaetes expressing BosRR39K. Furthermore, the spirochaetes expressing BosR activated rpoS transcription during growth in culture whereas the spirochaetes expressing BosRR39K did not. Thus, BosR's activation of rpoS transcription somehow involves Arg39. This arginine is highly conserved in other FUR proteins and therefore other FUR proteins may also require this arginine to function.
-
Seven supplementary tables, nine supplementary figures and supplementary methods are available with the online Supplementary Material.
-
Edited by: A. van Vliet
-
Abbreviations: kan kanamycin resistance qRT-PCR quantitative real-time PCR str streptomycin resistance
© 2015 The Authors
-
An Y.J., Ahn B.E., Han A.R., Kim H.M., Chung K.M., Shin J.H., Cho Y.B., Roe J.H., Cha S.S.. ( 2009;). Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition. Nucleic Acids Res 37: 3442––3451 [CrossRef] [PubMed].
-
Aravind L., Anantharaman V., Balaji S., Babu M.M., Iyer L.M.. ( 2005;). The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29: 231––262 [CrossRef] [PubMed].
-
Barbour A.G.. ( 1984;). Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57: 521––525 [PubMed].
-
Benach J.L., Bosler E.M., Hanrahan J.P., Coleman J.L., Habicht G.S., Bast T.F., Cameron D.J., Ziegler J.L., Barbour A.G., other authors. ( 1983;). Spirochetes isolated from the blood of two patients with Lyme disease. N Engl J Med 308: 740––742 [CrossRef] [PubMed].
-
Blevins J.S., Xu H., He M., Norgard M.V., Reitzer L., Yang X.F.. ( 2009;). Rrp2, a σ54-dependent transcriptional activator of Borrelia burgdorferi, activates rpoS in an enhancer-independent manner. J Bacteriol 191: 2902––2905 [CrossRef] [PubMed].
-
Boylan J.A., Posey J.E., Gherardini F.C.. ( 2003;). Borrelia oxidative stress response regulator, BosR: a distinctive Zn-dependent transcriptional activator. Proc Natl Acad Sci U S A 100: 11684––11689 [CrossRef] [PubMed].
-
Boylan J.A., Hummel C.S., Benoit S., Garcia-Lara J., Treglown-Downey J., Crane E.J. III, Gherardini F.C.. ( 2006;). Borrelia burgdorferi bb0728 encodes a coenzyme A disulphide reductase whose function suggests a role in intracellular redox and the oxidative stress response. Mol Microbiol 59: 475––486 [CrossRef] [PubMed].
-
Burgdorfer W., Barbour A.G., Hayes S.F., Benach J.L., Grunwaldt E., Davis J.P.. ( 1982;). Lyme disease-a tick-borne spirochetosis?. Science 216: 1317––1319 [CrossRef] [PubMed].
-
Burtnick M.N., Downey J.S., Brett P.J., Boylan J.A., Frye J.G., Hoover T.R., Gherardini F.C.. ( 2007;). Insights into the complex regulation of rpoS in Borrelia burgdorferi. Mol Microbiol 65: 277––293 [CrossRef] [PubMed].
-
Butcher J., Sarvan S., Brunzelle J.S., Couture J.F., Stintzi A.. ( 2012;). Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation. Proc Natl Acad Sci U S A 109: 10047––10052 [CrossRef] [PubMed].
-
Coleman J.L., Benach J.L.. ( 1989;). Identification and characterization of an endoflagellar antigen of Borrelia burgdorferi. J Clin Invest 84: 322––330 [CrossRef] [PubMed].
-
Dian C., Vitale S., Leonard G.A., Bahlawane C., Fauquant C., Leduc D., Muller C., de Reuse H., Michaud-Soret I., Terradot L.. ( 2011;). The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol Microbiol 79: 1260––1275 [CrossRef] [PubMed].
-
Eggers C.H., Caimano M.J., Clawson M.L., Miller W.G., Samuels D.S., Radolf J.D.. ( 2002;). Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the lyme disease spirochaete. Mol Microbiol 43: 281––295 [CrossRef] [PubMed].
-
Elias A.F., Stewart P.E., Grimm D., Caimano M.J., Eggers C.H., Tilly K., Bono J.L., Akins D.R., Radolf J.D., other authors. ( 2002;). Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70: 2139––2150 [CrossRef] [PubMed].
-
Finn R.D., Bateman A., Clements J., Coggill P., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., other authors. ( 2014;). Pfam: the protein families database. Nucleic Acids Res 42: (D1), D222––D230 [CrossRef] [PubMed].
-
Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R., Lathigra R., White O., Ketchum K.A., Dodson R., other authors. ( 1997;). Genomic sequence of a Lyme disease spirochaete. Borrelia burgdorferi. Nature 390: 580––586 [CrossRef] [PubMed].
-
Gilston B.A., Wang S., Marcus M.D., Canalizo-Hernández M.A., Swindell E.P., Xue Y., Mondragón A., O'Halloran T.V.. ( 2014;). Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon. PLoS Biol 12: e1001987 [CrossRef] [PubMed].
-
Grimm D., Tilly K., Byram R., Stewart P.E., Krum J.G., Bueschel D.M., Schwan T.G., Policastro P.F., Elias A.F., Rosa P.A.. ( 2004;). Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci U S A 101: 3142––3147 [CrossRef] [PubMed].
-
Hübner A., Yang X., Nolen D.M., Popova T.G., Cabello F.C., Norgard M.V.. ( 2001;). Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98: 12724––12729 [CrossRef] [PubMed].
-
Huffman J.L., Brennan R.G.. ( 2002;). Prokaryotic transcription regulators: more than just the helix-turn-helix motif. Curr Opin Struct Biol 12: 98––106 [CrossRef] [PubMed].
-
Hyde J.A., Seshu J., Skare J.T.. ( 2006;). Transcriptional profiling of Borrelia burgdorferi containing a unique bosR allele identifies a putative oxidative stress regulon. Microbiology 152: 2599––2609 [CrossRef] [PubMed].
-
Hyde J.A., Shaw D.K., Smith R. III, Trzeciakowski J.P., Skare J.T.. ( 2009;). The BosR regulatory protein of Borrelia burgdorferi interfaces with the RpoS regulatory pathway and modulates both the oxidative stress response and pathogenic properties of the Lyme disease spirochete. Mol Microbiol 74: 1344––1355 [CrossRef] [PubMed].
-
Hyde J.A., Shaw D.K., Smith R. III, Trzeciakowski J.P., Skare J.T.. ( 2010;). Characterization of a conditional bosR mutant in Borrelia burgdorferi. Infect Immun 78: 265––274 [CrossRef] [PubMed].
-
Jacquamet L., Traoré D.A., Ferrer J.L., Proux O., Testemale D., Hazemann J.L., Nazarenko E., El Ghazouani A., Caux-Thang C., other authors. ( 2009;). Structural characterization of the active form of PerR: insights into the metal-induced activation of PerR and Fur proteins for DNA binding. Mol Microbiol 73: 20––31 [CrossRef] [PubMed].
-
Katona L.I., Tokarz R., Kuhlow C.J., Benach J., Benach J.L.. ( 2004;). The fur homologue in Borrelia burgdorferi. J Bacteriol 186: 6443––6456 [CrossRef] [PubMed].
-
King R.A., Sen R., Weisberg R.A.. ( 2003;). Using a lac repressor roadblock to analyze the E. coli transcription elongation complex. Methods Enzymol 371: 207––218 [CrossRef] [PubMed].
-
Li X., Pal U., Ramamoorthi N., Liu X., Desrosiers D.C., Eggers C.H., Anderson J.F., Radolf J.D., Fikrig E.. ( 2007;). The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol 63: 694––710 [CrossRef] [PubMed].
-
Lin C.S., Chao S.Y., Hammel M., Nix J.C., Tseng H.L., Tsou C.C., Fei C.H., Chiou H.S., Jeng U.S., other authors. ( 2014;). Distinct structural features of the peroxide response regulator from group A Streptococcus drive DNA binding. PLoS One 9: e89027 [CrossRef] [PubMed].
-
Lucarelli D., Russo S., Garman E., Milano A., Meyer-Klaucke W., Pohl E.. ( 2007;). Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosis. J Biol Chem 282: 9914––9922 [CrossRef] [PubMed].
-
Lybecker M.C., Samuels D.S.. ( 2007;). Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. Mol Microbiol 64: 1075––1089 [CrossRef] [PubMed].
-
Lybecker M.C., Abel C.A., Feig A.L., Samuels D.S.. ( 2010;). Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 78: 622––635 [CrossRef] [PubMed].
-
Makthal N., Rastegari S., Sanson M., Ma Z., Olsen R.J., Helmann J.D., Musser J.M., Kumaraswami M.. ( 2013;). Crystal structure of peroxide stress regulator from Streptococcus pyogenes provides functional insights into the mechanism of oxidative stress sensing. J Biol Chem 288: 18311––18324 [CrossRef] [PubMed].
-
Ouyang Z., Kumar M., Kariu T., Haq S., Goldberg M., Pal U., Norgard M.V.. ( 2009;). BosR (BB0647) governs virulence expression in Borrelia burgdorferi. Mol Microbiol 74: 1331––1343 [CrossRef] [PubMed].
-
Ouyang Z., Deka R.K., Norgard M.V.. ( 2011;). BosR (BB0647) controls the RpoN-RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a novel DNA-binding mechanism. PLoS Pathog 7: e1001272 [CrossRef] [PubMed].
-
Ouyang Z., Zhou J., Brautigam C.A., Deka R., Norgard M.V.. ( 2014;). Identification of a core sequence for the binding of BosR to the rpoS promoter region in Borrelia burgdorferi. Microbiology 160: 851––862 [CrossRef] [PubMed].
-
Ouyang Z., Zhou J., Brautigam C.A., Deka R.K., Norgard M.V.. ( 2015;). Identification of a core sequence for the binding of BosR to the rpoS promoter region in Borrelia burgdorferi. Microbiology 161: 931 [CrossRef] [PubMed].
-
Pal U., Yang X., Chen M., Bockenstedt L.K., Anderson J.F., Flavell R.A., Norgard M.V., Fikrig E.. ( 2004;). OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113: 220––230 [CrossRef] [PubMed].
-
Palmer A.C., Ahlgren-Berg A., Egan J.B., Dodd I.B., Shearwin K.E.. ( 2009;). Potent transcriptional interference by pausing of RNA polymerases over a downstream promoter. Mol Cell 34: 545––555 [CrossRef] [PubMed].
-
Palmer A.C., Egan J.B., Shearwin K.E.. ( 2011;). Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors. Transcription 2: 9––14 [CrossRef] [PubMed].
-
Pecqueur L., D'Autréaux B., Dupuy J., Nicolet Y., Jacquamet L., Brutscher B., Michaud-Soret I., Bersch B.. ( 2006;). Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography. J Biol Chem 281: 21286––21295 [CrossRef] [PubMed].
-
Pohl E., Haller J.C., Mijovilovich A., Meyer-Klaucke W., Garman E., Vasil M.L.. ( 2003;). Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47: 903––915 [CrossRef] [PubMed].
-
Radolf J.D., Caimano M.J., Stevenson B., Hu L.T.. ( 2012;). Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10: 87––99 [PubMed].
-
Rohs R., West S.M., Sosinsky A., Liu P., Mann R.S., Honig B.. ( 2009;). The role of DNA shape in protein-DNA recognition. Nature 461: 1248––1253 [CrossRef] [PubMed].
-
Samuels D.S.. ( 2011;). Gene regulation in Borrelia burgdorferi. Annu Rev Microbiol 65: 479––499 [CrossRef] [PubMed].
-
Samuels D.S., Radolf J.D.. ( 2009;). Who is the BosR around here anyway?. Mol Microbiol 74: 1295––1299 [CrossRef] [PubMed].
-
Seshu J., Boylan J.A., Hyde J.A., Swingle K.L., Gherardini F.C., Skare J.T.. ( 2004;). A conservative amino acid change alters the function of BosR, the redox regulator of Borrelia burgdorferi. Mol Microbiol 54: 1352––1363 [CrossRef] [PubMed].
-
Shaw D.K., Hyde J.A., Skare J.T.. ( 2012;). The BB0646 protein demonstrates lipase and haemolytic activity associated with Borrelia burgdorferi, the aetiological agent of Lyme disease. Mol Microbiol 83: 319––334 [CrossRef] [PubMed].
-
Shearwin K.E., Callen B.P., Egan J.B.. ( 2005;). Transcriptional interference—a crash course. Trends Genet 21: 339––345 [CrossRef] [PubMed].
-
Sheikh M.A., Taylor G.L.. ( 2009;). Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol Microbiol 72: 1208––1220 [CrossRef] [PubMed].
-
Shi Y., Dadhwal P., Li X., Liang F.T.. ( 2014;). BosR functions as a repressor of the ospAB operon in Borrelia burgdorferi. PLoS One 9: e109307 [CrossRef] [PubMed].
-
Shin J.H., Jung H.J., An Y.J., Cho Y.B., Cha S.S., Roe J.H.. ( 2011;). Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proc Natl Acad Sci U S A 108: 5045––5050 [CrossRef] [PubMed].
-
Smith A.H., Blevins J.S., Bachlani G.N., Yang X.F., Norgard M.V.. ( 2007;). Evidence that RpoS (σS) in Borrelia burgdorferi is controlled directly by RpoN (σ54/σN). J Bacteriol 189: 2139––2144 [CrossRef] [PubMed].
-
Steere A.C., Grodzicki R.L., Kornblatt A.N., Craft J.E., Barbour A.G., Burgdorfer W., Schmid G.P., Johnson E., Malawista S.E.. ( 1983;). The spirochetal etiology of Lyme disease. N Engl J Med 308: 733––740 [CrossRef] [PubMed].
-
Studholme D.J., Buck M.. ( 2000;). Novel roles of σN in small genomes. Microbiology 146: 4––5 [CrossRef] [PubMed].
-
Tilly K., Krum J.G., Bestor A., Jewett M.W., Grimm D., Bueschel D., Byram R., Dorward D., Vanraden M.J., other authors. ( 2006;). Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect Immun 74: 3554––3564 [CrossRef] [PubMed].
-
Traoré D.A., El Ghazouani A., Ilango S., Dupuy J., Jacquamet L., Ferrer J.L., Caux-Thang C., Duarte V., Latour J.M.. ( 2006;). Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Mol Microbiol 61: 1211––1219 [CrossRef] [PubMed].
-
Traoré D.A.K., El Ghazouani A., Jacquamet L., Borel F., Ferrer J.-L., Lascoux D., Ravanat J.-L., Jaquinod M., Blondin G., other authors. ( 2009;). Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein. Nat Chem Biol 5: 53––59 [CrossRef] [PubMed].
-
Wang P., Dadhwal P., Cheng Z., Zianni M.R., Rikihisa Y., Liang F.T., Li X.. ( 2013;). Borrelia burgdorferi oxidative stress regulator BosR directly represses lipoproteins primarily expressed in the tick during mammalian infection. Mol Microbiol 89: 1140––1153 [CrossRef] [PubMed].
-
Xu H., Caimano M.J., Lin T., He M., Radolf J.D., Norris S.J., Gherardini F., Wolfe A.J., Yang X.F.. ( 2010;). Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferi. PLoS Pathog 6: e1001104 [CrossRef] [PubMed].
-
Yang X., Goldberg M.S., Popova T.G., Schoeler G.B., Wikel S.K., Hagman K.E., Norgard M.V.. ( 2000;). Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi. Mol Microbiol 37: 1470––1479 [CrossRef] [PubMed].
-
Yang X.F., Alani S.M., Norgard M.V.. ( 2003;). The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci U S A 100: 11001––11006 [CrossRef] [PubMed].

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/micro/10.1099/mic.0.000166dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/micro AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/micro/10.1099/mic.0.000166dcterms_title,dcterms_subject-pub_serialIdent:journal/micro AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....