1887

Abstract

Production of pigments by filamentous fungi is gaining interest owing to their use as food colourants, in cosmetics and textiles, and because of the important biological activities of these compounds. In this context, the objectives of this study were to select pigment-producing fungi, identify these fungi based on internal transcribed spacer sequences, evaluate the growth and pigment production of the selected strains on four different media, and characterize the major coloured metabolites in their extracts. Of the selected fungal strains, eight were identified as (CML2967), (CML2964), (CML2968), (CML2965), (CML2966), (CML2971), (CML2970) and sp. (CML2969). Fungal pigment production was influenced by medium composition. Complex media, such as potato dextrose and malt extract, favoured increased pigment production. The coloured compounds oosporein, orevactaene and dihydrotrichodimerol were identified in extracts of (CML2970), (CML2971), and (CML2965), respectively. These results indicate that the selected fungal strains can serve as novel sources of pigments that have important industrial applications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000168
2016-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/1/12.html?itemId=/content/journal/micro/10.1099/mic.0.000168&mimeType=html&fmt=ahah

References

  1. Abe N., Murata T., Hirota A. 1998; Novel DPPH radical scavengers, bisorbicillinol and demethytrichodimerol, from a fungus. Biosci Biotechnol Biochem 62:661–666 [View Article]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Bastola D. R., Otu H. H., Doukas S. E., Sayood K., Hinrichs S. H., Iwen P. C. 2004; Utilization of the relative complexity measure to construct a phylogenetic tree for fungi. Mycol Res 108:117–125 [View Article][PubMed]
    [Google Scholar]
  4. Boonyapranai K. R., Tung P., Lhieochaiphant S., Phutrakul S. 2008; Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides . Chiang Mai J Sci 35:457–466
    [Google Scholar]
  5. Calvo A. M., Wilson R. A., Bok J. W., Keller N. P. 2002; Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459 [View Article][PubMed]
    [Google Scholar]
  6. Caro Y., Anamale L., Fouillaud M., Laurent P., Petit T., Dufosse L. 2012; Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect 2:174–193 [View Article]
    [Google Scholar]
  7. Celestino J., dos R., de Carvalho L. E., Lima M., da P., Lima A. M., Ogusku M. M., de Souza J. V. B. 2014; Bioprospecting of Amazon soil fungi with the potential for pigment production. Process Biochem 49:569–575 [View Article]
    [Google Scholar]
  8. Chatterjee S., Maity S., Chattopadhyay P., Sarkar A., Laskar S., Sen S. K. 2009; Characterization of red pigment from Monascus in submerged culture. Red pigment from Monascus purpureus. J Appl Sci Res 5:2102–2108
    [Google Scholar]
  9. Cole R. J., Kirksey J. W., Cutler H. G., Davis E. E. 1974; Toxic effects of oosporein from Chaetomium trilaterale . J Agric Food Chem 22:517–520 [View Article][PubMed]
    [Google Scholar]
  10. Darriba D., Taboada G. L., Doallo R., Posada D. 2012; jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772 [View Article][PubMed]
    [Google Scholar]
  11. Dufossé L., Fouillaud M., Caro Y., Mapari S.A.S., Sutthiwong N. 2014; Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61 [View Article][PubMed]
    [Google Scholar]
  12. Evidente A., Andolfi A., Cimmino A., Ganassi S., Altomare C., Favilla M., De Cristofaro A., Vitagliano S., Agnese Sabatini M. 2009; Bisorbicillinoids produced by the fungus Trichoderma citrinoviride affect feeding preference of the aphid Schizaphis graminum . J Chem Ecol 35:533–541 [View Article][PubMed]
    [Google Scholar]
  13. Fox E. M., Howlett B. J. 2008; Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487 [View Article][PubMed]
    [Google Scholar]
  14. Frisvad J. C., Samson R. A. 2004; Polyphasic taxonomy of Penicillium subgenus Penicillium . A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–174
    [Google Scholar]
  15. Frisvad J. C., Smedsgaard J., Larsen T. O., Samson R. A. 2004; Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium . Stud Mycol 49:201–241
    [Google Scholar]
  16. Geweely N. S. 2011; Investigation of the optimum condition and antimicrobial activities of pigments from four potent pigment-producing fungal species. J Life Sci 5:697–711
    [Google Scholar]
  17. Gribanovski-Sassu O., Foppen F. H. 1967; The carotenoids of the fungus Epicoccum nigrum link. Phytochemistry 6:907–909 [View Article]
    [Google Scholar]
  18. Heijwegen T. 1989; Effect of seventeen fungicolous fungi on sporulation of cucumber powder mildew. Neth J Plant Pathol 94:185–190 [View Article]
    [Google Scholar]
  19. Huang H., Feng X., Xiao Z., Liu L., Li H., Ma L., Lu Y., Ju J., She Z., Lin Y. 2011; Azaphilones and p-terphenyls from the mangrove endophytic fungus Penicillium chermesinum (ZH4-E2) isolated from the South China Sea. J Nat Prod 74:997–1002 [View Article][PubMed]
    [Google Scholar]
  20. Kogl F., van Wessem G. C. 1944; Analysis concerning pigments of fungi XIV. Concerning oosporein, the pigment of Oospora colorans van Beyma. Recl Trav Chim Pays Bas Belg 63:5–24 [CrossRef]
    [Google Scholar]
  21. Lee D., Lee J. H., Cai X. F., Shin J. C., Lee K., Hong Y. S., Lee J. J. 2005; Fungal metabolites, sorbicillinoid polyketides and their effects on the activation of peroxisome proliferator-activated receptor γ. J Antibiot (Tokyo) 58:615–620 [View Article][PubMed]
    [Google Scholar]
  22. Liu W., Gu Q., Zhu W., Cui C., Fan G. 2005; Dihydrotrichodimerol and tetrahydrotrichodimerol, two new bisorbicillinoids, from a marine-derived Penicillium terrestre . J Antibiot (Tokyo) 58:621–624 [View Article][PubMed]
    [Google Scholar]
  23. Lopes F. C., Tichota D. M., Pereira J. Q., Segalin J., de Oliveira Rios A., Brandelli A. 2013; Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative. Appl Biochem Biotechnol 171:616–625 [View Article][PubMed]
    [Google Scholar]
  24. Luo Z., Li Y., Mousa J., Bruner S., Zhang Y., Pei Y., Keyhani N. O. 2015; Bbmsn2 acts as a pH-dependent negative regulator of secondary metabolite production in the entomopathogenic fungus Beauveria bassiana . Environ Microbiol 17:1189–1202 [View Article][PubMed]
    [Google Scholar]
  25. Mao B. Z., Huang C., Yang G. M., Chen Y. Z., Chen S. Y. 2010; Separation and determination of bioactivity of oosporein from Chaetomium cupreum . Afr J Biotechnol 9:5955–5961
    [Google Scholar]
  26. Mapari S.A.S., Nielsen K. F., Larsen T. O., Frisvad J. C., Meyer A. S., Thrane U. 2005; Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16:231–238 [View Article][PubMed]
    [Google Scholar]
  27. Mapari S.A.S., Meyer A. S., Thrane U. 2008; Evaluation of Epicoccum nigrum for growth, morphology and production of natural colorants in liquid media and on a solid rice medium. Biotechnol Lett 30:2183–2190 [View Article][PubMed]
    [Google Scholar]
  28. Mapari S.A.S., Meyer A. S., Thrane U., Frisvad J. C. 2009; Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact 8:24 [View Article][PubMed]
    [Google Scholar]
  29. Mapari S.A.S., Thrane U., Meyer A. S. 2010; Fungal polyketide azaphilone pigments as future natural food colorants?. Trends Biotechnol 28:300–307 [View Article][PubMed]
    [Google Scholar]
  30. Méndez A., Pérez C., Montañéz J. C., Martínez G., Aguilar C. N. 2011; Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ Sci B 12:961–968 [View Article][PubMed]
    [Google Scholar]
  31. Mukherjee G., Singh S. K. 2011; Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem 46:188–192 [View Article]
    [Google Scholar]
  32. Nagaoka T., Nakata K., Kouno K. 2004; Antifungal activity of oosporein from an antagonistic fungus against Phytophthora infestans . Z Naturforsch C 59:302–304 [View Article][PubMed]
    [Google Scholar]
  33. Nagia F. A., El-Mohamedy R.S.R. 2007; Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum . Dyes Pigments 75:550–555 [View Article]
    [Google Scholar]
  34. Pečiulyte˙ D., Kačergius A. 2012; Lecanicillium aphanocladii – a new species to the mycoflora of Lithuania and a new pathogen of tree leaves mining insects. Botanica Lithuanica 18:133–146 [View Article]
    [Google Scholar]
  35. Pegram R. A., Wyatt R. D., Smith T. L. 1982; Oosporein-toxicosis in the turkey poult. Avian Dis 26:47–59 [View Article][PubMed]
    [Google Scholar]
  36. Pradeep F. S., Pradeep B. V. 2013; Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions. Int J Pharm Pharmaceut Scis 5:(Suppl. 3)526–535
    [Google Scholar]
  37. Pradeep F. S., Begam M. S., Palaniswamy M., Pradeep B. V. 2013; Influence of culture media on growth and pigment production by Fusarium moniliforme KUMBF1201 isolated from paddy field soil. World Appl Sci J 22:70–77 [View Article]
    [Google Scholar]
  38. Premalatha B., Pradeep F. S., Pradeep B. V., Palaniswamy M. 2012; Production and characterization of naphthoquinone pigment from Fusarium moniliforme MTCC6985. World J Pharmaceut Res 1:1126–1142
    [Google Scholar]
  39. Quereshi S., Pandey A. K., Singh J. 2010; Optimization of fermentation conditions for red pigment production from Phoma herbarum (FGCC#54) under submerged cultivation. J Phytol 2:1–8
    [Google Scholar]
  40. Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J. P. 2012; MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542 [View Article][PubMed]
    [Google Scholar]
  41. Scott A. J., Knott M. 1974; A cluster analysis method for grouping means in the analysis of variance. Biometrics 30:507–512 [View Article]
    [Google Scholar]
  42. Sharma D., Gupta C., Aggarwal S., Nagpal N. 2012; Pigment extraction from fungus for textile dyeing. Indian J Fibre Text Res 37:68–73
    [Google Scholar]
  43. Shu Y.-Z., Ye Q., Li H., Kadow K. F., Hussain R. A., Huang S., Gustavson D. R., Lowe S. E., Chang L.-P., other authors. 1997; Orevactaene, a novel binding inhibitor of HIV-1 rev protein to Rev response element (RRE) from Epicoccum nigrum WC47880. Bioorg Med Chem Lett 7:2295–2298 [View Article]
    [Google Scholar]
  44. Shwab E. K., Keller N. P. 2008; Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res 112:225–230 [View Article][PubMed]
    [Google Scholar]
  45. S¸opticã F., Bahrim G. 2005; Influence of light upon flavonoid yields in Epicoccum nigrum solid state fermentation. Rom Biotechnol Lett 10:2387–2394
    [Google Scholar]
  46. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  47. Teixeira M.F.S., Martins M. S., Da Silva J., Kirsch L. S., Fernandes O.C.C., Carneiro A.L.B., De Conti R., Dúran N. 2012; Amazonian biodiversity: pigments from Aspergillus and Penicillium – characterizations, antibacterial activities and their toxicities. Curr Trends Biotechnol Pharm 6:300–311
    [Google Scholar]
  48. Terry B. J., Liu W. C., Cianci C. W., Proszynski E., Fernandes P., Bush K., Meyers E. 1992; Inhibition of herpes simplex virus type 1 DNA polymerase by the natural product oosporein. J Antibiot (Tokyo) 45:286–288 [View Article][PubMed]
    [Google Scholar]
  49. Velmurugan P., Lee Y. H., Venil C. K., Lakshmanaperumalsamy P., Chae J.-C., Oh B.-T. 2010; Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng 109:346–350 [View Article][PubMed]
    [Google Scholar]
  50. White T. J., Bruns T., Lee S., Taylor J. 1990; Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications pp 315–322 Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. San Diego: Academic Press;
    [Google Scholar]
  51. Zare R., Gams W. 2001; A revision of Verticillium section Prostrata, IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73:1–50
    [Google Scholar]
  52. Zare R., Mohammadi A. H. 2006; Lecanicillium aphanocladii, a new species to the mycoflora of Iran and a new potential biological control agent against aphids transmitting viruses. Rostaniha 7:107–109
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000168
Loading
/content/journal/micro/10.1099/mic.0.000168
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error