1887

Abstract

The Gram-negative bacterial type VI secretion system (T6SS) delivers toxins to kill or inhibit the growth of susceptible bacteria, while other secretion systems target eukaryotic cells. Deletion of , a negative regulator of virulence factors in K56-2, increases T6SS activity. Macrophages infected with a K56-2 mutant display dramatic alterations in their actin cytoskeleton architecture that rely on the T6SS, which is responsible for the inactivation of multiple Rho-family GTPases by an unknown mechanism. We employed a strategy to standardize the bacterial infection of macrophages and densitometrically quantify the T6SS-associated cellular phenotype, which allowed us to characterize the phenotype of systematic deletions of each gene within the T6SS cluster and ten genes in K56-2 . None of the genes from the T6SS core cluster nor the individual genes were directly responsible for the cytoskeletal changes in infected cells. However, a mutant strain with all genes deleted was unable to cause macrophage alterations. Despite not being able to identify a specific effector protein responsible for the cytoskeletal defects in macrophages, our strategy resulted in the identification of the critical core components and accessory proteins of the T6SS assembly machinery and provides a screening method to detect T6SS effectors targeting the actin cytoskeleton in macrophages by random mutagenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000174
2015-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2161.html?itemId=/content/journal/micro/10.1099/mic.0.000174&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. (1990). Basic local alignment search toolJ Mol Biol 215403410 [View Article][PubMed]. [Google Scholar]
  2. Aschtgen M.S., Bernard C.S., De Bentzmann S., Lloubès R., Cascales E. (2008). SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coliJ Bacteriol 19075237531 [View Article][PubMed]. [Google Scholar]
  3. Aschtgen M.S., Thomas M.S., Cascales E. (2010). Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP… what else?Virulence 1535540 [View Article][PubMed]. [Google Scholar]
  4. Aubert D.F., Flannagan R.S., Valvano M.A. (2008). A novel sensor kinase-response regulator hybrid controls biofilm formation and type VI secretion system activity in Burkholderia cenocepaciaInfect Immun 7619791991 [View Article][PubMed]. [Google Scholar]
  5. Aubert D., MacDonald D.K., Valvano M.A. (2010). BcsKC is an essential protein for the type VI secretion system activity in Burkholderia cenocepacia that forms an outer membrane complex with BcsLBJ Biol Chem 2853598835998 [View Article][PubMed]. [Google Scholar]
  6. Aubert D.F., O'Grady E.P., Hamad M.A., Sokol P.A., Valvano M.A. (2013). The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signallingEnviron Microbiol 15372385 [View Article][PubMed]. [Google Scholar]
  7. Basler M., Pilhofer M., Henderson G.P., Jensen G.J., Mekalanos J.J. (2012). Type VI secretion requires a dynamic contractile phage tail-like structureNature 483182186 [View Article][PubMed]. [Google Scholar]
  8. Bönemann G., Pietrosiuk A., Diemand A., Zentgraf H., Mogk A. (2009). Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretionEMBO J 28315325 [View Article][PubMed]. [Google Scholar]
  9. Bönemann G., Pietrosiuk A., Mogk A. (2010). Tubules and donuts: a type VI secretion storyMol Microbiol 76815821 [View Article][PubMed]. [Google Scholar]
  10. Boyer F., Fichant G., Berthod J., Vandenbrouck Y., Attree I. (2009). Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?BMC Genomics 10104 [View Article][PubMed]. [Google Scholar]
  11. Brooks T.M., Unterweger D., Bachmann V., Kostiuk B., Pukatzki S. (2013). Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaBJ Biol Chem 28876187625 [View Article][PubMed]. [Google Scholar]
  12. Burns J.L., Jonas M., Chi E.Y., Clark D.K., Berger A., Griffith A. (1996). Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepaciaInfect Immun 6440544059[PubMed]. [Google Scholar]
  13. Clemens D.L., Ge P., Lee B.Y., Horwitz M.A., Zhou Z.H. (2015). Atomic structure of T6SS reveals interlaced array essential to functionCell 160940951 [View Article][PubMed]. [Google Scholar]
  14. Cohen S.N., Chang A.C., Hsu L. (1972). Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNAProc Natl Acad Sci U S A 6921102114 [View Article][PubMed]. [Google Scholar]
  15. Costa T.R., Felisberto-Rodrigues C., Meir A., Prevost M.S., Redzej A., Trokter M., Waksman G. (2015). Secretion systems in Gram-negative bacteria: structural and mechanistic insightsNat Rev Microbiol 13343359 [View Article][PubMed]. [Google Scholar]
  16. Cox G.W., Mathieson B.J., Gandino L., Blasi E., Radzioch D., Varesio L. (1989). Heterogeneity of hematopoietic cells immortalized by v-myc/v-raf recombinant retrovirus infection of bone marrow or fetal liverJ Natl Cancer Inst 8114921496 [View Article][PubMed]. [Google Scholar]
  17. Craig F.F., Coote J.G., Parton R., Freer J.H., Gilmour N.J. (1989). A plasmid which can be transferred between Escherichia coli and Pasteurella haemolytica by electroporation and conjugationJ Gen Microbiol 13528852890[PubMed]. [Google Scholar]
  18. Drevinek P., Mahenthiralingam E. (2010). Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulenceClin Microbiol Infect 16821830 [View Article][PubMed]. [Google Scholar]
  19. Durand E., Zoued A., Spinelli S., Watson P.J., Aschtgen M.S., Journet L., Cambillau C., Cascales E. (2012). Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systemsJ Biol Chem 2871415714168 [View Article][PubMed]. [Google Scholar]
  20. Durand E., Cambillau C., Cascales E., Journet L. (2014). VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectorsTrends Microbiol 22498507 [View Article][PubMed]. [Google Scholar]
  21. English G., Byron O., Cianfanelli F.R., Prescott A.R., Coulthurst S.J. (2014). Biochemical analysis of TssK, a core component of the bacterial type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplexBiochem J 461291304 [View Article][PubMed]. [Google Scholar]
  22. Felisberto-Rodrigues C., Durand E., Aschtgen M.S., Blangy S., Ortiz-Lombardia M., Douzi B., Cambillau C., Cascales E. (2011). Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovarPLoS Pathog 7e1002386 [View Article][PubMed]. [Google Scholar]
  23. Figurski D.H., Helinski D.R. (1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in transProc Natl Acad Sci U S A 7616481652 [View Article][PubMed]. [Google Scholar]
  24. Flannagan R.S., Linn T., Valvano M.A. (2008). A system for the construction of targeted unmarked gene deletions in the genus BurkholderiaEnviron Microbiol 1016521660 [View Article][PubMed]. [Google Scholar]
  25. Flannagan R.S., Jaumouillé V., Huynh K.K., Plumb J.D., Downey G.P., Valvano M.A., Grinstein S. (2012). Burkholderia cenocepacia disrupts host cell actin cytoskeleton by inactivating Rac and Cdc42Cell Microbiol 14239254 [View Article][PubMed]. [Google Scholar]
  26. Hamad M.A., Skeldon A.M., Valvano M.A. (2010). Construction of aminoglycoside-sensitive Burkholderia cenocepacia strains for use in studies of intracellular bacteria with the gentamicin protection assayAppl Environ Microbiol 7631703176 [View Article][PubMed]. [Google Scholar]
  27. Hunt T.A., Kooi C., Sokol P.A., Valvano M.A. (2004). Identification of Burkholderia cenocepacia genes required for bacterial survival in vivoInfect Immun 7240104022 [View Article][PubMed]. [Google Scholar]
  28. Isles A., Maclusky I., Corey M., Gold R., Prober C., Fleming P., Levison H. (1984). Pseudomonas cepacia infection in cystic fibrosis: an emerging problemJ Pediatr 104206210 [View Article][PubMed]. [Google Scholar]
  29. Jiang F., Waterfield N.R., Yang J., Yang G., Jin Q. (2014). Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cellsCell Host Microbe 15600610 [View Article]. [Google Scholar]
  30. Kanehisa M., Goto S. (2000). KEGG: Kyoto encyclopedia of genes and genomesNucleic Acids Res 282730 [View Article][PubMed]. [Google Scholar]
  31. Keith K.E., Hynes D.W., Sholdice J.E., Valvano M.A. (2009). Delayed association of the NADPH oxidase complex with macrophage vacuoles containing the opportunistic pathogen Burkholderia cenocepaciaMicrobiology 15510041015 [View Article][PubMed]. [Google Scholar]
  32. Khodai-Kalaki M., Aubert D.F., Valvano M.A. (2013). Characterization of the AtsR hybrid sensor kinase phosphorelay pathway and identification of its response regulator in Burkholderia cenocepaciaJ Biol Chem 2883047330484 [View Article][PubMed]. [Google Scholar]
  33. Khodai-Kalaki M., Andrade A., Fathy Mohamed Y., Valvano M.A. (2015). Burkholderia cenocepacia lipopolysaccharide modification and flagellin glycosylation affect virulence but not innate immune recognition in plantsMBio 6e00679e00615 [View Article][PubMed]. [Google Scholar]
  34. Kudryashev M., Wang R.Y., Brackmann M., Scherer S., Maier T., Baker D., DiMaio F., Stahlberg H., Egelman E.H., Basler M. (2015). Structure of the type VI secretion system contractile sheathCell 160952962 [View Article][PubMed]. [Google Scholar]
  35. Lamothe J., Thyssen S., Valvano M.A. (2004). Burkholderia cepacia complex isolates survive intracellularly without replication within acidic vacuoles of Acanthamoeba polyphagaCell Microbiol 611271138 [View Article][PubMed]. [Google Scholar]
  36. Lamothe J., Huynh K.K., Grinstein S., Valvano M.A. (2007). Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuolesCell Microbiol 94053 [View Article][PubMed]. [Google Scholar]
  37. Mahenthiralingam E., Coenye T., Chung J.W., Speert D.P., Govan J.R., Taylor P., Vandamme P. (2000). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complexJ Clin Microbiol 38910913[PubMed]. [Google Scholar]
  38. Mahenthiralingam E., Baldwin A., Dowson C.G. (2008). Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biologyJ Appl Microbiol 10415391551 [View Article][PubMed]. [Google Scholar]
  39. Marolda C.L., Hauröder B., John M.A., Michel R., Valvano M.A. (1999). Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebaeMicrobiology 14515091517 [View Article][PubMed]. [Google Scholar]
  40. Martin D.W., Mohr C.D. (2000). Invasion and intracellular survival of Burkholderia cepaciaInfect Immun 682429 [View Article][PubMed]. [Google Scholar]
  41. Pukatzki S., Ma A.T., Revel A.T., Sturtevant D., Mekalanos J.J. (2007). Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actinProc Natl Acad Sci U S A 1041550815513 [View Article][PubMed]. [Google Scholar]
  42. Rosales-Reyes R., Skeldon A.M., Aubert D.F., Valvano M.A. (2012). The type VI secretion system of Burkholderia cenocepacia affects multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophagesCell Microbiol 14255273 [View Article][PubMed]. [Google Scholar]
  43. Russell A.B., Hood R.D., Bui N.K., LeRoux M., Vollmer W., Mougous J.D. (2011). Type VI secretion delivers bacteriolytic effectors to target cellsNature 475343347 [View Article][PubMed]. [Google Scholar]
  44. Russell A.B., Peterson S.B., Mougous J.D. (2014). Type VI secretion system effectors: poisons with a purposeNat Rev Microbiol 12137148 [View Article][PubMed]. [Google Scholar]
  45. Saini L.S., Galsworthy S.B., John M.A., Valvano M.A. (1999). Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activationMicrobiology 14534653475 [View Article][PubMed]. [Google Scholar]
  46. Sajjan U.S., Yang J.H., Hershenson M.B., LiPuma J.J. (2006). Intracellular trafficking and replication of Burkholderia cenocepacia in human cystic fibrosis airway epithelial cellsCell Microbiol 814561466 [View Article][PubMed]. [Google Scholar]
  47. Sambrook J., Fritsch E.F., Maniatis T. (1989). Molecular Cloning: a Laboratory Manual2nd edn.New YorkCold Spring Harbor Laboratory. [Google Scholar]
  48. Schmerk C.L., Valvano M.A. (2013). Burkholderia multivorans survival and trafficking within macrophagesJ Med Microbiol 62173184 [View Article][PubMed]. [Google Scholar]
  49. Schwarz S., Singh P., Robertson J.D., LeRoux M., Skerrett S.J., Goodlett D.R., West T.E., Mougous J.D. (2014). VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulenceInfect Immun 8214451452 [View Article][PubMed]. [Google Scholar]
  50. Shalom G., Shaw J.G., Thomas M.S. (2007). In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophagesMicrobiology 15326892699 [View Article][PubMed]. [Google Scholar]
  51. Shneider M.M., Buth S.A., Ho B.T., Basler M., Mekalanos J.J., Leiman P.G. (2013). PAAR-repeat proteins sharpen and diversify the type VI secretion system spikeNature 500350353 [View Article][PubMed]. [Google Scholar]
  52. Smith T.F., Waterman M.S. (1981). Identification of common molecular subsequencesJ Mol Biol 147195197 [View Article][PubMed]. [Google Scholar]
  53. Suarez G., Sierra J.C., Erova T.E., Sha J., Horneman A.J., Chopra A.K. (2010). A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actinJ Bacteriol 192155168 [View Article][PubMed]. [Google Scholar]
  54. Thomson E.L.S., Dennis J.J. (2013). Common duckweed (Lemna minor) is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteriaPLoS One 8e80102 [View Article][PubMed]. [Google Scholar]
  55. Toesca I.J., French C.T., Miller J.F. (2014). The type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by pseudomallei group Burkholderia speciesInfect Immun 8214361444 [View Article][PubMed]. [Google Scholar]
  56. Uehlinger S., Schwager S., Bernier S.P., Riedel K., Nguyen D.T., Sokol P.A., Eberl L. (2009). Identification of specific and universal virulence factors in Burkholderia cenocepacia strains by using multiple infection hostsInfect Immun 7741024110 [View Article][PubMed]. [Google Scholar]
  57. Varga J.J., Losada L., Zelazny A.M., Kim M., McCorrison J., Brinkac L., Sampaio E.P., Greenberg D.E., Singh I., other authors. (2013). Draft genome sequences of Burkholderia cenocepacia ET12 lineage strains K56-2 and BC7Genome Announc 1e00841e00813 [View Article][PubMed]. [Google Scholar]
  58. Vergunst A.C., Meijer A.H., Renshaw S.A., O'Callaghan D. (2010). Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infectionInfect Immun 7814951508 [View Article][PubMed]. [Google Scholar]
  59. Waters V. (2012). New treatments for emerging cystic fibrosis pathogens other than PseudomonasCurr Pharm Des 18696725 [View Article][PubMed]. [Google Scholar]
  60. Zheng J., Leung K.Y. (2007). Dissection of a type VI secretion system in Edwardsiella tardaMol Microbiol 6611921206 [View Article][PubMed]. [Google Scholar]
  61. Zheng J., Ho B., Mekalanos J.J. (2011). Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio choleraePLoS One 6e23876 [View Article][PubMed]. [Google Scholar]
  62. Zoued A., Durand E., Bebeacua C., Brunet Y.R., Douzi B., Cambillau C., Cascales E., Journet L. (2013). TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion systemJ Biol Chem 2882703127041 [View Article][PubMed]. [Google Scholar]
  63. Zoued A., Brunet Y.R., Durand E., Aschtgen M.S., Logger L., Douzi B., Journet L., Cambillau C., Cascales E. (2014). Architecture and assembly of the type VI secretion systemBiochim Biophys Acta 184316641673 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000174
Loading
/content/journal/micro/10.1099/mic.0.000174
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error