1887

Abstract

Only two beta-lactamases, TEM-1 and ROB-1, have been observed in , while four different TEM but no ROB enzymes have been found in . In order to investigate the mechanisms behind the dissemination of small beta-lactamase-encoding plasmids in and , we assessed the fitness cost of three TEM-1- (pPN223, pA1209, pA1606), one TEM-15- (pSF3) and one ROB-1-bearing (pB1000) plasmid when expressed in either bacterial species. All plasmids were stable in and except pB1000, which showed on average (sample mean) 76 % curing in after 5 days of subculture. Competition assays between isogenic strains with and without plasmid showed no competitive disadvantage of pPN223 and pA1606 in , or of pA1209 in . In contrast, pSF3 and pB1000 were associated with significant competitive disadvantages in both species. Some of the competitive disadvantages may be related to differences in plasmid copy number and mRNA expression of the beta-lactamase genes, as revealed by quantitative PCR analysis. In conclusion, plasmids encoding TEM beta-lactamases isolated from and can be stably transferred between species. The fast curing of pB1000 in observed in this study correlates to the fact that ROB-1 has never been reported for this species. TEM-1-encoding plasmids are associated with the lowest level of fitness cost, but different TEM-1 plasmids confer different levels of fitness cost on the two hosts.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000183
2015-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2310.html?itemId=/content/journal/micro/10.1099/mic.0.000183&mimeType=html&fmt=ahah

References

  1. Andersson D. I., Hughes D. (2010). Antibiotic resistance and its cost: is it possible to reverse resistance?Nat Rev Microbiol 8260271[PubMed]. [Google Scholar]
  2. Farrell D. J., Morrissey I., Bakker S., Buckridge S., Felmingham D. (2005). Global distribution of TEM-1 and ROB-1 beta-lactamases in Haemophilus influenzae J Antimicrob Chemother 56773776 [View Article][PubMed]. [Google Scholar]
  3. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., other authors. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae RdScience 269496512 [View Article][PubMed]. [Google Scholar]
  4. Fleury C., Resman F., Rau J., Riesbeck K. (2014). Prevalence, distribution and transfer of small β-lactamase-containing plasmids in Swedish Haemophilus influenzae J Antimicrob Chemother 6912381242 [View Article][PubMed]. [Google Scholar]
  5. García-Cobos S., Arroyo M., Campos J., Pérez-Vázquez M., Aracil B., Cercenado E., Orden B., Lara N., Oteo J. (2013). Novel mechanisms of resistance to β-lactam antibiotics in Haemophilus parainfluenzae: β-lactamase-negative ampicillin resistance and inhibitor-resistant TEM β-lactamasesJ Antimicrob Chemother 6810541059 [View Article][PubMed]. [Google Scholar]
  6. Hedegaard J., Okkels H., Bruun B., Kilian M., Mortensen K. K., Nørskov-Lauritsen N. (2001). Phylogeny of the genus Haemophilus as determined by comparison of partial infB sequencesMicrobiology 14725992609 [View Article][PubMed]. [Google Scholar]
  7. Leaves N. I., Dimopoulou I., Hayes I., Kerridge S., Falla T., Secka O., Adegbola R. A., Slack M. P., Peto T. E., Crook D. W. (2000). Epidemiological studies of large resistance plasmids in Haemophilus J Antimicrob Chemother 45599604 [View Article][PubMed]. [Google Scholar]
  8. Lenski R. E. (1998). Bacterial evolution and the cost of antibiotic resistanceInt Microbiol 1265270[PubMed]. [Google Scholar]
  9. San Millan A., Escudero J. A., Catalan A., Nieto S., Farelo F., Gibert M., Moreno M. A., Dominguez L., Gonzalez-Zorn B. (2007). Beta-lactam resistance in Haemophilus parasuis is mediated by plasmid pB1000 bearing bla ROB-1 Antimicrob Agents Chemother 5122602264 [View Article][PubMed]. [Google Scholar]
  10. San Millan A., Escudero J. A., Gutierrez B., Hidalgo L., Garcia N., Llagostera M., Dominguez L., Gonzalez-Zorn B. (2009). Multiresistance in Pasteurella multocida is mediated by coexistence of small plasmidsAntimicrob Agents Chemother 5333993404 [View Article][PubMed]. [Google Scholar]
  11. San Millan A., Garcia-Cobos S., Escudero J. A., Hidalgo L., Gutierrez B., Carrilero L., Campos J., Gonzalez-Zorn B. (2010). Haemophilus influenzae clinical isolates with plasmid pB1000 bearing bla ROB-1: fitness cost and interspecies disseminationAntimicrob Agents Chemother 5415061511 [View Article][PubMed]. [Google Scholar]
  12. San Millan A., Santos-Lopez A., Ortega-Huedo R., Bernabe-Balas C., Kennedy S. P., Gonzalez-Zorn B. (2015). Small plasmid-mediated antibiotic resistance in Haemophilus influenzae is enhanced by increases in plasmid copy number and bacterial fitnessAntimicrob Agents Chemother 5933353341.[CrossRef] [Google Scholar]
  13. Søndergaard A., San Millan A., Santos-Lopez A., Nielsen S. M., Gonzalez-Zorn B., Nørskov-Lauritsen N. (2012). Molecular organization of small plasmids bearing bla TEM-1 and conferring resistance to β-lactams in Haemophilus influenzae Antimicrob Agents Chemother 5649584960 [View Article][PubMed]. [Google Scholar]
  14. Tristram S., Jacobs M. R., Appelbaum P. C. (2007). Antimicrobial resistance in Haemophilus influenzae Clin Microbiol Rev 20368389 [View Article][PubMed]. [Google Scholar]
  15. Tristram S. G., Pitout M. J., Forward K., Campbell S., Nichols S., Davidson R. J. (2008). Characterization of extended-spectrum beta-lactamase-producing isolates of Haemophilus parainfluenzae J Antimicrob Chemother 61509514 [View Article][PubMed]. [Google Scholar]
  16. Tristram S. G., Littlejohn R., Bradbury R. S. (2010). bla ROB-1 presence on pB1000 in Haemophilus influenzae is widespread, and variable cefaclor resistance is associated with altered penicillin-binding proteinsAntimicrob Agents Chemother 5449454947 [View Article][PubMed]. [Google Scholar]
  17. Tristram S. G., Franks L. R., Harvey G. L. (2012). Sequences of small bla TEM-encoding plasmids in Haemophilus influenzae and description of variants falsely negative for bla TEM by PCRJ Antimicrob Chemother 6726212625 [View Article][PubMed]. [Google Scholar]
  18. Ubukata K., Shibasaki Y., Yamamoto K., Chiba N., Hasegawa K., Takeuchi Y., Sunakawa K., Inoue M., Konno M. (2001). Association of amino acid substitutions in penicillin-binding protein 3 with beta-lactam resistance in beta-lactamase-negative ampicillin-resistant Haemophilus influenzae Antimicrob Agents Chemother 4516931699 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000183
Loading
/content/journal/micro/10.1099/mic.0.000183
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error