
f The abundant and essential HU proteins in Deinococcus deserti and Deinococcus radiodurans are translated from leaderless mRNA
- Authors: Claire Bouthier de la Tour1 , Laurence Blanchard2,3,4 , Rémi Dulermo1,3,4,5,7 , Monika Ludanyi2,3,4 , Alice Devigne1 , Jean Armengaud6 , Suzanne Sommer1 , Arjan de Groot2,3,4
-
- VIEW AFFILIATIONS
-
1 1Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, F-91405 Orsay, France 2 2CEA, DSV, IBEB, Lab Bioenerget Cellulaire, F-13108 Saint-Paul-lez-Durance, France 3 3CNRS, UMR 7265 Biol Veget & Microbiol Environ, F-13108 Saint-Paul-lez-Durance, France 4 4Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France 5 5CEA, DSV, IBEB, Lab Ecol Microb Rhizosphere & Environ Extrem, F-13108 Saint-Paul-lez-Durance, France 6 6CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory ‘Innovative technologies for Detection and Diagnostic’, BP 17171, F-30207 Bagnols-sur-Cèze, France
- Correspondence Arjan de Groot [email protected]
- First Published Online: 01 December 2015, Microbiology 161: 2410-2422, doi: 10.1099/mic.0.000186
- Subject: Regulation
- Received:
- Accepted:
- Revised:
- Cover date:




The abundant and essential HU proteins in Deinococcus deserti and Deinococcus radiodurans are translated from leaderless mRNA, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/micro/161/12/2410_mic000186-1.gif
-
HU proteins have an important architectural role in nucleoid organization in bacteria. Compared with HU of many bacteria, HU proteins from Deinococcus species possess an N-terminal lysine-rich extension similar to the eukaryotic histone H1 C-terminal domain involved in DNA compaction. The single HU gene in Deinococcus radiodurans, encoding DrHU, is required for nucleoid compaction and cell viability. Deinococcus deserti contains three expressed HU genes, encoding DdHU1, DdHU2 and DdHU3. Here, we show that either DdHU1 or DdHU2 is essential in D. deserti. DdHU1 and DdHU2, but not DdHU3, can substitute for DrHU in D. radiodurans, indicating that DdHU3 may have a non-essential function different from DdHU1, DdHU2 and DrHU. Interestingly, the highly abundant DrHU and DdHU1 proteins, and also the less expressed DdHU2, are translated in Deinococcus from leaderless mRNAs, which lack a 5′-untranslated region and, hence, the Shine–Dalgarno sequence. Unexpectedly, cloning the DrHU or DdHU1 gene under control of a strong promoter in an expression plasmid, which results in leadered transcripts, strongly reduced the DrHU and DdHU1 protein level in D. radiodurans compared with that obtained from the natural leaderless gene. We also show that the start codon position for DrHU and DdHU1 should be reannotated, resulting in proteins that are 15 and 4 aa residues shorter than initially reported. The expression level and start codon correction were crucial for functional characterization of HU in Deinococcus.
-
†Present address: INRA, UMR1319 Micalis, F-78352 Jouy-en-Josas, France.
-
Three supplementary tables and two supplementary figures are available with the online Supplementary Material.
-
Edited by: D. Grainger
-
Abbreviations: RACE rapid amplification of cDNA ends; TSS transcription start site; UTR untranslated region
© 2015 The Authors
-
Baudet M., Ortet P., Gaillard J. C., Fernandez B., Guérin P., Enjalbal C., Subra G., de Groot A., Barakat M., other authors. ( 2010;). Proteomics-based refinement of Deinococcus deserti genome annotation reveals an unwonted use of non-canonical translation initiation codons. Mol Cell Proteomics 9: 415––426 [CrossRef] [PubMed].
-
Benelli D., Londei P.. ( 2009;). Begin at the beginning: evolution of translational initiation. Res Microbiol 160: 493––501 [CrossRef] [PubMed].
-
Bharath M. M., Ramesh S., Chandra N. R., Rao M. R.. ( 2002;). Identification of a 34 amino acid stretch within the C-terminus of histone H1 as the DNA-condensing domain by site-directed mutagenesis. Biochemistry 41: 7617––7627 [CrossRef] [PubMed].
-
Bonacossa de Almeida C., Coste G., Sommer S., Bailone A.. ( 2002;). Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol Genet Genomics 268: 28––41 [CrossRef] [PubMed].
-
Bouthier de la Tour C. B., Passot F. M., Toueille M., Mirabella B., Guérin P., Blanchard L., Servant P., de Groot A., Sommer S., Armengaud J.. ( 2013;). Comparative proteomics reveals key proteins recruited at the nucleoid of Deinococcus after irradiation-induced DNA damage. Proteomics 13: 3457––3469 [CrossRef] [PubMed].
-
Brock J. E., Pourshahian S., Giliberti J., Limbach P. A., Janssen G. R.. ( 2008;). Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5′-terminal AUG. RNA 14: 2159––2169 [CrossRef] [PubMed].
-
Byrgazov K., Vesper O., Moll I.. ( 2013;). Ribosome heterogeneity: another level of complexity in bacterial translation regulation. Curr Opin Microbiol 16: 133––139 [CrossRef] [PubMed].
-
de Groot A., Dulermo R., Ortet P., Blanchard L., Guérin P., Fernandez B., Vacherie B., Dossat C., Jolivet E., other authors. ( 2009;). Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet 5: e1000434 [CrossRef] [PubMed].
-
de Groot A., Roche D., Fernandez B., Ludanyi M., Cruveiller S., Pignol D., Vallenet D., Armengaud J., Blanchard L.. ( 2014;). RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti. Genome Biol Evol 6: 932––948 [CrossRef] [PubMed].
-
Dillon S. C., Dorman C. J.. ( 2010;). Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8: 185––195 [CrossRef] [PubMed].
-
Dulermo R., Fochesato S., Blanchard L., de Groot A.. ( 2009;). Mutagenic lesion bypass and two functionally different RecA proteins in Deinococcus deserti. Mol Microbiol 74: 194––208 [CrossRef] [PubMed].
-
Ghosh S., Grove A.. ( 2004;). Histone-like protein HU from Deinococcus radiodurans binds preferentially to four-way DNA junctions. J Mol Biol 337: 561––571 [CrossRef] [PubMed].
-
Ghosh S., Grove A.. ( 2006;). The Deinococcus radiodurans-encoded HU protein has two DNA-binding domains. Biochemistry 45: 1723––1733 [CrossRef] [PubMed].
-
Grove A.. ( 2011;). Functional evolution of bacterial histone-like HU proteins. Curr Issues Mol Biol 13: 1––12 [PubMed].
-
Hansen M. T.. ( 1978;). Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol 134: 71––75 [PubMed].
-
Hartmann E. M., Armengaud J.. ( 2014;). N-terminomics and proteogenomics, getting off to a good start. Proteomics 14: 2637––2646 [CrossRef] [PubMed].
-
Hering O., Brenneis M., Beer J., Suess B., Soppa J.. ( 2009;). A novel mechanism for translation initiation operates in haloarchaea. Mol Microbiol 71: 1451––1463 [CrossRef] [PubMed].
-
Kawamura S., Kakuta Y., Tanaka I., Hikichi K., Kuhara S., Yamasaki N., Kimura M.. ( 1996;). Glycine-15 in the bend between two alpha-helices can explain the thermostability of DNA binding protein HU from Bacillus stearothermophilus. Biochemistry 35: 1195––1200 [CrossRef] [PubMed].
-
Kumar S., Sardesai A. A., Basu D., Muniyappa K., Hasnain S. E.. ( 2010;). DNA clasping by mycobacterial HU: the C-terminal region of HupB mediates increased specificity of DNA binding. PLoS One 5: e12551 [CrossRef] [PubMed].
-
Lecointe F., Coste G., Sommer S., Bailone A.. ( 2004;). Vectors for regulated gene expression in the radioresistant bacterium Deinococcus radiodurans. Gene 336: 25––35 [CrossRef] [PubMed].
-
Levin-Zaidman S., Englander J., Shimoni E., Sharma A. K., Minton K. W., Minsky A.. ( 2003;). Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance?. Science 299: 254––256 [CrossRef] [PubMed].
-
Ludanyi M., Blanchard L., Dulermo R., Brandelet G., Bellanger L., Pignol D., Lemaire D., de Groot A.. ( 2014;). Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrO. Mol Microbiol 94: 434––449 [CrossRef] [PubMed].
-
Luijsterburg M. S., Noom M. C., Wuite G. J., Dame R. T.. ( 2006;). The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J Struct Biol 156: 262––272 [CrossRef] [PubMed].
-
Malys N., McCarthy J. E.. ( 2011;). Translation initiation: variations in the mechanism can be anticipated. Cell Mol Life Sci 68: 991––1003 [CrossRef] [PubMed].
-
Mennecier S., Coste G., Servant P., Bailone A., Sommer S.. ( 2004;). Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans. Mol Genet Genomics 272: 460––469 [CrossRef] [PubMed].
-
Moll I., Grill S., Gualerzi C. O., Bläsi U.. ( 2002;). Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 43: 239––246 [CrossRef] [PubMed].
-
Mukherjee A., Bhattacharyya G., Grove A.. ( 2008;). The C-terminal domain of HU-related histone-like protein Hlp from Mycobacterium smegmatis mediates DNA end-joining. Biochemistry 47: 8744––8753 [CrossRef] [PubMed].
-
Nguyen H. H., de la Tour C. B., Toueille M., Vannier F., Sommer S., Servant P.. ( 2009;). The essential histone-like protein HU plays a major role in Deinococcus radiodurans nucleoid compaction. Mol Microbiol 73: 240––252 [CrossRef] [PubMed].
-
Norais C., Servant P., Bouthier-de-la-Tour C., Coureux P. D., Ithurbide S., Vannier F., Guerin P. P., Dulberger C. L., Satyshur K. A., other authors. ( 2013;). The Deinococcus radiodurans DR1245 protein, a DdrB partner homologous to YbjN proteins and reminiscent of type III secretion system chaperones. PLoS One 8: e56558 [CrossRef] [PubMed].
-
O'Donnell S. M., Janssen G. R.. ( 2001;). The initiation codon affects ribosome binding and translational efficiency in Escherichia coli of cI mRNA with or without the 5′ untranslated leader. J Bacteriol 183: 1277––1283 [CrossRef] [PubMed].
-
O'Donnell S. M., Janssen G. R.. ( 2002;). Leaderless mRNAs bind 70S ribosomes more strongly than 30S ribosomal subunits in Escherichia coli. J Bacteriol 184: 6730––6733 [CrossRef] [PubMed].
-
Schiza V., Molina-Serrano D., Kyriakou D., Hadjiantoniou A., Kirmizis A.. ( 2013;). N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing. PLoS Genet 9: e1003805 [CrossRef] [PubMed].
-
Sharadamma N., Khan K., Kumar S., Patil K. N., Hasnain S. E., Muniyappa K.. ( 2011;). Synergy between the N-terminal and C-terminal domains of Mycobacterium tuberculosis HupB is essential for high-affinity binding, DNA supercoiling and inhibition of RecA-promoted strand exchange. FEBS J 278: 3447––3462 [CrossRef] [PubMed].
-
Tillett D., Burns B. P., Neilan B. A.. ( 2000;). Optimized rapid amplification of cDNA ends (RACE) for mapping bacterial mRNA transcripts. Biotechniques 28: 448, 450, 452––453, 456 [PubMed].
-
Toueille M., Mirabella B., Guérin P., Bouthier de la Tour C., Boisnard S., Nguyen H. H., Blanchard L., Servant P., de Groot A., other authors. ( 2012;). A comparative proteomic approach to better define Deinococcus nucleoid specificities. J Proteomics 75: 2588––2600 [CrossRef] [PubMed].
-
Van Etten W. J., Janssen G. R.. ( 1998;). An AUG initiation codon, not codon-anticodon complementarity, is required for the translation of unleadered mRNA in Escherichia coli. Mol Microbiol 27: 987––1001 [CrossRef] [PubMed].
-
Vujičić-Zagar A., Dulermo R., Le Gorrec M., Vannier F., Servant P., Sommer S., de Groot A., Serre L.. ( 2009;). Crystal structure of the IrrE protein, a central regulator of DNA damage repair in Deinococcaceae. J Mol Biol 386: 704––716 [CrossRef] [PubMed].
-
Yee B., Sagulenko E., Fuerst J. A.. ( 2011;). Making heads or tails of the HU proteins in the planctomycete Gemmata obscuriglobus. Microbiology 157: 2012––2021 [CrossRef] [PubMed].
-
Zheng X., Hu G. Q., She Z. S., Zhu H.. ( 2011;). Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes. BMC Genomics 12: 361 [CrossRef] [PubMed].
-
Zimmerman J. M., Battista J. R.. ( 2005;). A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol 5: 17 [CrossRef] [PubMed].

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/micro/10.1099/mic.0.000186dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/micro AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/micro/10.1099/mic.0.000186dcterms_title,dcterms_subject-pub_serialIdent:journal/micro AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....