Growth and physiology of Clostridium perfringens wild-type and ΔazoC knockout: an azo dye exposure study Morrison, Jessica M. and John, Gilbert H.,, 162, 330-338 (2016), doi = https://doi.org/10.1099/mic.0.000212, publicationName = Microbiology Society, issn = 1350-0872, abstract= Clostridium perfringens, a strictly anaerobic micro-organism and inhabitant of the human intestine, has been shown to produce the azoreductase enzyme AzoC, an NAD(P)H-dependent flavin oxidoreductase. This enzyme reduces azo dyes to aromatic amines, which are carcinogenic in nature. A significant amount of work has been completed that focuses on the activity of this enzyme; however, few studies have been completed that focus on the physiology of azo dye reduction. Dye reduction studies coupled with C. perfringens growth studies in the presence of ten different azo dyes and in media of varying complexities were completed to compare the growth rates and dye-reducing activity of C. perfringens WT cells, a C. perfringens ΔazoC knockout, and Bifidobacterium infantis, a non-azoreductase-producing control bacterium. The presence of azo dyes significantly increased the generation time of C. perfringens in rich medium, an effect that was not seen in minimal medium. In addition, azo dye reduction studies with the ΔazoC knockout suggested the presence of additional functional azoreductases in this medically important bacterium. Overall, this study addresses a major gap in the literature by providing the first look, to our knowledge, at the complex physiology of C. perfringens upon azo dye exposure and the effect that both azo dyes and the azoreductase enzyme have on growth., language=, type=