1887

Abstract

, an aerobic Gram-negative bacterium, is capable of colonizing the respiratory tract of diverse animals and chronically persists inside the hosts by forming biofilm. Most known virulence factors in species are regulated by the BvgAS two-component transduction system. The Bvg-activated proteins play a critical role during host infection. OmpQ is an outer membrane porin protein which is expressed under BvgAS control. Here, we studied the contribution of OmpQ to the biofilm formation process by We found that the lack of expression of OmpQ did not affect the growth kinetics and final biomass of under planktonic growth conditions. The Δ mutant strain displayed no differences in attachment level and in early steps of biofilm formation. However, deletion of the gene attenuated the ability of to form a mature biofilm. Analysis of gene expression during the biofilm formation process by showed a dynamic expression pattern, with an increase of biofilm culture at 48 h. Moreover, we demonstrated that the addition of serum anti-OmpQ had the potential to reduce the biofilm biomass formation in a dose-dependent manner. In conclusion, we showed for the first time, to the best of our knowledge, evidence of the contribution of OmpQ to a process of importance for pathobiology. Our results indicate that OmpQ plays a role during the biofilm development process, particularly at later stages of development, and that this porin could be a potential target for strategies of biofilm formation inhibition.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000224
2016-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/2/351.html?itemId=/content/journal/micro/10.1099/mic.0.000224&mimeType=html&fmt=ahah

References

  1. Alvarez Hayes J., Erben E., Lamberti Y., Ayala M., Maschi F., Carbone C., Gatti B., Parisi G., Rodriguez M. E. 2011; Identification of a new protective antigen of Bordetella pertussis . Vaccine 29:8731–8739 [View Article][PubMed]
    [Google Scholar]
  2. Amato S. M., Brynildsen M. P. 2014; Nutrient transitions are a source of persisters in Escherichia coli biofilms. PLoS One 9:e93110 [View Article][PubMed]
    [Google Scholar]
  3. Armstrong S. K., Parr T. R. Jr, Parker C. D., Hancock R. E. 1986; Bordetella pertussis major outer membrane porin protein forms small, anion-selective channels in lipid bilayer membranes. J Bacteriol 166:212–216[PubMed]
    [Google Scholar]
  4. Aunkham A., Schulte A., Winterhalter M., Suginta W. 2014; Porin involvement in cephalosporin and carbapenem resistance of Burkholderia pseudomallei . PLoS One 9:e95918 [View Article][PubMed]
    [Google Scholar]
  5. Byun J., Verardo M. R., Sumengen B., Lewis G. P., Manjunath B. S., Fisher S. K. 2006; Automated tool for the detection of cell nuclei in digital microscopic images: application to retinal images. Mol Vis 12:949–960[PubMed]
    [Google Scholar]
  6. Chiappini E., Stival A., Galli L., de Martino M. 2013; Pertussis re-emergence in the post-vaccination era. BMC Infect Dis 13:151 [View Article][PubMed]
    [Google Scholar]
  7. Conover M. S., Sloan G. P., Love C. F., Sukumar N., Deora R. 2010; The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Mol Microbiol 77:1439–1455 [View Article][PubMed]
    [Google Scholar]
  8. Conover M. S., Mishra M., Deora R. 2011; Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS One 6:e16861 [View Article][PubMed]
    [Google Scholar]
  9. Conover M. S., Redfern C. J., Ganguly T., Sukumar N., Sloan G., Mishra M., Deora R. 2012; BpsR modulates Bordetella biofilm formation by negatively regulating the expression of the Bps polysaccharide. J Bacteriol 194:233–242 [View Article][PubMed]
    [Google Scholar]
  10. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745 [View Article][PubMed]
    [Google Scholar]
  11. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [View Article][PubMed]
    [Google Scholar]
  12. Cotter P. A., Jones A. M. 2003; Phosphorelay control of virulence gene expression in Bordetella . Trends Microbiol 11:367–373 [View Article][PubMed]
    [Google Scholar]
  13. Cotter P. A., Miller J. F. 1994; BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun 62:3381–3390[PubMed]
    [Google Scholar]
  14. de Gouw D., Diavatopoulos D. A., Bootsma H. J., Hermans P. W., Mooi F. R. 2011; Pertussis: a matter of immune modulation. FEMS Microbiol Rev 35:441–474 [View Article][PubMed]
    [Google Scholar]
  15. de Gouw D., Serra D. O., de Jonge M. I., Hermans P. W. M., Wessels H.J.C.T., Zomer A., Yantorno O. M., Diavatopoulos D. A., Mooi F. R. 2014; The vaccine potential of Bordetella pertussis biofilm-derived membrane proteins. Emerg Microbes Infect 3:e58 [View Article][PubMed]
    [Google Scholar]
  16. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  17. Deora R., Bootsma H. J., Miller J. F., Cotter P. A. 2001; Diversity in the Bordetella virulence regulon: transcriptional control of a Bvg-intermediate phase gene. Mol Microbiol 40:669–683 [View Article][PubMed]
    [Google Scholar]
  18. Dolinsky T. J., Nielsen J. E., McCammon J. A., Baker N. A. 2004; pdb2pqr: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res 32:(Web Server)W665–W667 [View Article][PubMed]
    [Google Scholar]
  19. Donlan R. M., Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 [View Article][PubMed]
    [Google Scholar]
  20. Edwards R. A., Keller L. H., Schifferli D. M. 1998; Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207:149–157 [CrossRef]
    [Google Scholar]
  21. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652 [CrossRef]
    [Google Scholar]
  22. Finelli A., Gallant C. V., Jarvi K., Burrows L. L. 2003; Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:2700–2710 [View Article][PubMed]
    [Google Scholar]
  23. Finn T. M., Li Z., Kocsis E. 1995; Identification of a Bordetella pertussis bvg-regulated porin-like protein. J Bacteriol 177:805–809[PubMed]
    [Google Scholar]
  24. Fito-Boncompte L., Chapalain A., Bouffartigues E., Chaker H., Lesouhaitier O., Gicquel G., Bazire A., Madi A., Connil N., other authors. 2011; Full virulence of Pseudomonas aeruginosa requires OprF. Infect Immun 79:1176–1186 [View Article][PubMed]
    [Google Scholar]
  25. Guindon S., Delsuc F., Dufayard J. F., Gascuel O. 2009; Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 537:113–137 [View Article][PubMed]
    [Google Scholar]
  26. Hall-Stoodley L., Stoodley P. 2005; Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13:7–10 [View Article][PubMed]
    [Google Scholar]
  27. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersbøll B. K., Molin S. 2000; Quantification of biofilm structures by the novel computer program comstat . Microbiology 146:2395–2407 [View Article][PubMed]
    [Google Scholar]
  28. Higgins D. G., Bleasby A. J., Fuchs R. 1992; clustal v: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191[PubMed]
    [Google Scholar]
  29. Høiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O. 2010; Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332 [View Article][PubMed]
    [Google Scholar]
  30. Hot D., Antoine R., Renauld-Mongénie G., Caro V., Hennuy B., Levillain E., Huot L., Wittmann G., Poncet D., other authors. 2003; Differential modulation of Bordetella pertussis virulence genes as evidenced by DNA microarray analysis. Mol Genet Genomics 269:475–486 [View Article][PubMed]
    [Google Scholar]
  31. Irie Y., Mattoo S., Yuk M. H. 2004; The Bvg virulence control system regulates biofilm formation in Bordetella bronchiseptica . J Bacteriol 186:5692–5698 [View Article][PubMed]
    [Google Scholar]
  32. Jaroszewski L., Rychlewski L., Li Z., Li W., Godzik A. 2005; FFAS03: a server for profile–profile sequence alignments. Nucleic Acids Res 33:(Web Server)W284–W288 [View Article][PubMed]
    [Google Scholar]
  33. Kinnear S. M., Marques R. R., Carbonetti N. H. 2001; Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity. Infect Immun 69:1983–1993 [View Article][PubMed]
    [Google Scholar]
  34. Koebnik R., Locher K. P., Van Gelder P. 2000; Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37:239–253 [View Article][PubMed]
    [Google Scholar]
  35. Kojima S., Nikaido H. 2014; High salt concentrations increase permeability through OmpC channels of Escherichia coli . J Biol Chem 289:26464–26473 [View Article][PubMed]
    [Google Scholar]
  36. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M., II & Peterson K. M. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802
    [Google Scholar]
  37. Liu X., Ferenci T. 2001; An analysis of multifactorial influences on the transcriptional control of ompF and ompC porin expression under nutrient limitation. Microbiology 147:2981–2989 [View Article][PubMed]
    [Google Scholar]
  38. Mah T. F., O'Toole G. A. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39 [View Article][PubMed]
    [Google Scholar]
  39. Mattoo S., Cherry J. D. 2005; Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382 [View Article][PubMed]
    [Google Scholar]
  40. Mishra M., Parise G., Jackson K. D., Wozniak D. J., Deora R. 2005; The BvgAS signal transduction system regulates biofilm development in Bordetella . J Bacteriol 187:1474–1484 [View Article][PubMed]
    [Google Scholar]
  41. Missineo A., Di Poto A., Geoghegan J. A., Rindi S., Heilbronner S., Gianotti V., Arciola C. R., Foster T. J., Speziale P., Pietrocola G. 2014; IsdC from Staphylococcus lugdunensis induces biofilm formation under low-iron growth conditions. Infect Immun 82:2448–2459 [View Article][PubMed]
    [Google Scholar]
  42. Mulcahy H., Lewenza S. 2011; Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle. PLoS One 6:e23307 [View Article][PubMed]
    [Google Scholar]
  43. Nicholson T. L., Brockmeier S. L., Loving C. L., Register K. B., Kehrli M. E. Jr, Stibitz S. E., Shore S. M. 2012a; Phenotypic modulation of the virulent Bvg phase is not required for pathogenesis and transmission of Bordetella bronchiseptica in swine. Infect Immun 80:1025–1036 [View Article][PubMed]
    [Google Scholar]
  44. Nicholson T. L., Conover M. S., Deora R. 2012b; Transcriptome profiling reveals stage-specific production and requirement of flagella during biofilm development in Bordetella bronchiseptica . PLoS One 7:e49166 [View Article][PubMed]
    [Google Scholar]
  45. Nikaido H. 2003; Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656 [View Article][PubMed]
    [Google Scholar]
  46. O'Toole G. A., Pratt L. A., Watnick P. I., Newman D. K., Weaver V. B., Kolter R. 1999; Genetic approaches to study of biofilms. Methods Enzymol 310:91–109 [View Article][PubMed]
    [Google Scholar]
  47. Packard E. R., Parton R., Coote J. G., Fry N. K. 2004; Sequence variation and conservation in virulence-related genes of Bordetella pertussis isolates from the UK. J Med Microbiol 53:355–365 [View Article][PubMed]
    [Google Scholar]
  48. Parise G., Mishra M., Itoh Y., Romeo T., Deora R. 2007; Role of a putative polysaccharide locus in Bordetella biofilm development. J Bacteriol 189:750–760 [View Article][PubMed]
    [Google Scholar]
  49. Schirmer T. 1998; General and specific porins from bacterial outer membranes. J Struct Biol 121:101–109 [View Article][PubMed]
    [Google Scholar]
  50. Schneider C. A., Rasband W. S., Eliceiri K. W. 2012; NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675 [View Article][PubMed]
    [Google Scholar]
  51. Schulz G. E. 1996; Porins: general to specific, native to engineered passive pores. Curr Opin Struct Biol 6:485–490 [View Article][PubMed]
    [Google Scholar]
  52. Serra D., Bosch A., Russo D. M., Rodríguez M. E., Zorreguieta A., Schmitt J., Naumann D., Yantorno O. 2007; Continuous nondestructive monitoring of Bordetella pertussis biofilms by Fourier transform infrared spectroscopy and other corroborative techniques. Anal Bioanal Chem 387:1759–1767 [View Article][PubMed]
    [Google Scholar]
  53. Serra D. O., Lücking G., Weiland F., Schulz S., Görg A., Yantorno O. M., Ehling-Schulz M. 2008; Proteome approaches combined with Fourier transform infrared spectroscopy revealed a distinctive biofilm physiology in Bordetella pertussis . Proteomics 8:4995–5010 [View Article][PubMed]
    [Google Scholar]
  54. Serra D. O., Conover M. S., Arnal L., Sloan G. P., Rodriguez M. E., Yantorno O. M., Deora R. 2011; FHA-mediated cell-substrate and cell-cell adhesions are critical for Bordetella pertussis biofilm formation on abiotic surfaces and in the mouse nose and the trachea. PLoS One 6:e28811 [View Article][PubMed]
    [Google Scholar]
  55. Shahrooei M., Hira V., Stijlemans B., Merckx R., Hermans P. W., Van Eldere J. 2009; Inhibition of Staphylococcus epidermidis biofilm formation by rabbit polyclonal antibodies against the SesC protein. Infect Immun 77:3670–3678 [View Article][PubMed]
    [Google Scholar]
  56. Sloan G. P., Love C. F., Sukumar N., Mishra M., Deora R. 2007; The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract. J Bacteriol 189:8270–8276 [View Article][PubMed]
    [Google Scholar]
  57. Söding J., Remmert M., Biegert A., Lupas A. N. 2006; HHsenser: exhaustive transitive profile search using HMM–HMM comparison. Nucleic Acids Res 34:(Web Server)W374–W378 [View Article][PubMed]
    [Google Scholar]
  58. Stewart P. S. 2003; Diffusion in biofilms. J Bacteriol 185:1485–1491 [View Article][PubMed]
    [Google Scholar]
  59. Stewart P. S., Costerton J. W. 2001; Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138 [View Article][PubMed]
    [Google Scholar]
  60. Tashiro Y., Nomura N., Nakao R., Senpuku H., Kariyama R., Kumon H., Kosono S., Watanabe H., Nakajima T., Uchiyama H. 2008; Opr86 is essential for viability and is a potential candidate for a protective antigen against biofilm formation by Pseudomonas aeruginosa . J Bacteriol 190:3969–3978 [View Article][PubMed]
    [Google Scholar]
  61. Tefon B. E., Maass S., Ozcengiz E., Becher D., Hecker M., Ozcengiz G. 2011; A comprehensive analysis of Bordetella pertussis surface proteome and identification of new immunogenic proteins. Vaccine 29:3583–3595 [View Article][PubMed]
    [Google Scholar]
  62. Webb B., Sali A. 2014; Comparative protein structure modeling using modeller . Curr Protoc Bioinformatics 47:5.6.1–5.6.32 [CrossRef]
    [Google Scholar]
  63. Weir E. 2002; Resurgence of Bordetella pertussis infection. Can Med Assoc J 167:1146[PubMed]
    [Google Scholar]
  64. Wiederstein M., Sippl M. J. 2007; ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:(Web Server)W407–W410 [View Article][PubMed]
    [Google Scholar]
  65. Williamson Y. M., Moura H., Simmons K., Whitmon J., Melnick N., Rees J., Woolfitt A., Schieltz D. M., Tondella M. L., other authors. 2012; A gel-free proteomic-based method for the characterization of Bordetella pertussis clinical isolates. J Microbiol Methods 90:119–133 [View Article][PubMed]
    [Google Scholar]
  66. Woolfrey B. F., Moody J. A. 1991; Human infections associated with Bordetella bronchiseptica . Clin Microbiol Rev 4:243–255[PubMed]
    [Google Scholar]
  67. Yoon S. S., Hennigan R. F., Hilliard G. M., Ochsner U. A., Parvatiyar K., Kamani M. C., Allen H. L., DeKievit T. R., Gardner P. R., other authors. 2002; Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3:593–603 [View Article][PubMed]
    [Google Scholar]
  68. Zeth K., Diederichs K., Welte W., Engelhardt H. 2000; Crystal structure of Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 Å resolution. Structure 8:981–992 [View Article][PubMed]
    [Google Scholar]
  69. Zhu Y. Z., Cai C. S., Zhang W., Guo H. X., Zhang J. P., Ji Y. Y., Ma G. Y., Wu J. L., Li Q. T., other authors. 2010; Immunoproteomic analysis of human serological antibody responses to vaccination with whole-cell pertussis vaccine (WCV). PLoS One 5:e13915 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000224
Loading
/content/journal/micro/10.1099/mic.0.000224
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error