1887

Abstract

Addition of stearyl alcohol to the culture medium of sp. NT80 induced expression of a significant amount of secretory lipase. Comparative proteomic analysis of extracellular proteins from NT80 cells grown in the presence or absence of stearyl alcohol revealed that stearyl alcohol induced expression of several secretory proteins including lipase, haemolysin-coregulated protein and nucleoside diphosphate kinase. Expression of these secreted proteins was upregulated at the transcriptional level. Stearyl alcohol also induced the synthesis of polyhydroxyalkanoate. Secretory protein EliA was required for all these responses of NT80 cells to stearyl alcohol. Accordingly, the effects of stearyl alcohol were significantly reduced in the deletion mutant cells of NT80 (Δ). The remaining concentration of stearyl alcohol in the culture supernatant of the wild-type cells, but not that in the culture supernatant of the Δ cells, clearly decreased during the course of growth. These observed phenotypes of the Δ mutant were rescued by gene complementation. The results suggested that EliA is essential for these cells to respond to stearyl alcohol, and that it plays an important role in the recognition and assimilation of stearyl alcohol by NT80 cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000225
2016-02-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/2/408.html?itemId=/content/journal/micro/10.1099/mic.0.000225&mimeType=html&fmt=ahah

References

  1. Akanuma G., Hara H., Ohnishi Y., Horinouchi S. 2009; Dynamic changes in the extracellular proteome caused by absence of a pleiotropic regulator AdpA in Streptomyces griseus . Mol Microbiol 73:898–912 [View Article][PubMed]
    [Google Scholar]
  2. Akanuma G., Ishibashi H., Miyagawa T., Yoshizawa R., Watanabe S., Shiwa Y., Yoshikawa H., Ushio K., Ishizuka M. 2013; EliA facilitates the induction of lipase expression by stearyl alcohol in Ralstonia sp., NT80. FEMS Microbiol Lett 339:48–56 [View Article][PubMed]
    [Google Scholar]
  3. Aparna G., Chatterjee A., Sonti R. V., Sankaranarayanan R. 2009; A cell wall-degrading esterase of Xanthomonas oryzae requires a unique substrate recognition module for pathogenesis on rice. Plant Cell 21:1860–1873 [View Article][PubMed]
    [Google Scholar]
  4. Baysse C., Cullinane M., Dénervaud V., Burrowes E., Dow J. M., Morrissey J. P., Tam L., Trevors J. T., O'Gara F. 2005; Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties. Microbiology 151:2529–2542 [View Article][PubMed]
    [Google Scholar]
  5. Beeby M., Cho M., Stubbe J., Jensen G. J. 2012; Growth and localization of polyhydroxybutyrate granules in Ralstonia eutropha . J Bacteriol 194:1092–1099 [View Article][PubMed]
    [Google Scholar]
  6. Beisson F., Li-Beisson Y., Pollard M. 2012; Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15:329–337 [View Article][PubMed]
    [Google Scholar]
  7. Boekema B. K., Beselin A., Breuer M., Hauer B., Koster M., Rosenau F., Jaeger K. E., Tommassen J. 2007; Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Appl Environ Microbiol 73:3838–3844 [View Article][PubMed]
    [Google Scholar]
  8. Bouchez Naı¨tali M., Rakatozafy H., Marchal R., Leveau J. Y., Vandecasteele J. P. 1999; Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428 [View Article][PubMed]
    [Google Scholar]
  9. Brigham C. J., Speth D. R., Rha C., Sinskey A. J. 2012 Whole-genome microarray and gene deletion studies reveal regulation of the polyhydroxyalkanoate production cycle by the stringent response in Ralstonia eutropha H16. Appl Environ Microbiol 78:8033–8044 [View Article][PubMed]
    [Google Scholar]
  10. Burtnick M. N., Brett P. J., Harding S. V., Ngugi S. A., Ribot W. J., Chantratita N., Scorpio A., Milne T. S., Dean R. E., other authors. 2011; The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei . Infect Immun 79:1512–1525 [View Article][PubMed]
    [Google Scholar]
  11. Buschhaus C., Jetter R. 2011; Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces?. J Exp Bot 62:841–853 [View Article][PubMed]
    [Google Scholar]
  12. Büttner D., Bonas U. 2010; Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34:107–133 [View Article][PubMed]
    [Google Scholar]
  13. Chakrabarty A. M. 1998; Nucleoside diphosphate kinase: role in bacterial growth, virulence, cell signalling and polysaccharide synthesis. Mol Microbiol 28:875–882 [View Article][PubMed]
    [Google Scholar]
  14. Chater K. F., Biró S., Lee K. J., Palmer T., Schrempf H. 2010; The complex extracellular biology of Streptomyces . FEMS Microbiol Rev 34:171–198 [View Article][PubMed]
    [Google Scholar]
  15. Ciprandi A., da Silva W. M., Santos A. V., de Castro Pimenta A. M., Carepo M. S., Schneider M. P., Azevedo V., Silva A. 2013; Chromobacterium violaceum: important insights for virulence and biotechnological potential by exoproteomic studies. Curr Microbiol 67:100–106 [View Article][PubMed]
    [Google Scholar]
  16. Clemmer K. M., Rather P. N. 2008; The Lon protease regulates swarming motility and virulence gene expression in Proteus mirabilis . J Med Microbiol 57:931–937 [View Article][PubMed]
    [Google Scholar]
  17. Coenye T., Goris J., De Vos P., Vandamme P., LiPuma J. J. 2003; Classification of Ralstonia pickettii-like isolates from the environment and clinical samples as Ralstonia insidiosa sp. nov. Int J Syst Evol Microbiol 53:1075–1080 [View Article][PubMed]
    [Google Scholar]
  18. Cottyn B., Cerez M. T., Van Outryve M. F., Barroga J., Swings J., Mew T. W. 1996; Bacterial disease of rice I. Pathogenic bacteria associated with sheath rot complex and grain discoloration of rice in the Philippines. Plant Dis 80:429–437 [View Article]
    [Google Scholar]
  19. de María P. D., Sánchez-Montero J. M., Alcántara A. R., Valero F., Sinisterra J. V. 2005; Rational strategy for the production of new crude lipases from Candida rugosa . Biotechnol Lett 27:499–503 [View Article][PubMed]
    [Google Scholar]
  20. Decoin V., Barbey C., Bergeau D., Latour X., Feuilloley M. G., Orange N., Merieau A. 2014; A type VI secretion system is involved in Pseudomonas fluorescens bacterial competition. PLoS One 9:e89411 [View Article][PubMed]
    [Google Scholar]
  21. Deive F. J., Carvalho E., Pastrana L., Rúa M. L., Longo M. A., Sanroman M. A. 2009; Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresour Technol 100:3630–3637 [View Article][PubMed]
    [Google Scholar]
  22. Gil F., Ipinza F., Fuentes J., Fumeron R., Villarreal J. M., Aspée A., Mora G. C., Vásquez C. C., Saavedra C. 2007; The ompW (porin) gene mediates methyl viologen (paraquat) efflux in Salmonella enterica serovar typhimurium. Res Microbiol 158:529–536 [View Article][PubMed]
    [Google Scholar]
  23. Goo E., Kang Y., Kim H., Hwang I. 2010; Proteomic analysis of quorum sensing-dependent proteins in Burkholderia glumae . J Proteome Res 9:3184–3199 [View Article][PubMed]
    [Google Scholar]
  24. Ham J. H., Melanson R. A., Rush M. C. 2011; Burkholderia glumae: next major pathogen of rice?. Mol Plant Pathol 12:329–339 [View Article][PubMed]
    [Google Scholar]
  25. Hardegger M., Koch A. K., Ochsner U. A., Fiechter A., Reiser J. 1994; Cloning and heterologous expression of a gene encoding an alkane-induced extracellular protein involved in alkane assimilation from Pseudomonas aeruginosa . Appl Environ Microbiol 60:3679–3687[PubMed]
    [Google Scholar]
  26. Hayden H. S., Lim R., Brittnacher M. J., Sims E. H., Ramage E. R., Fong C., Wu Z., Crist E., Chang J., other authors. 2012; Evolution of Burkholderia pseudomallei in recurrent melioidosis. PLoS One 7:e36507 [View Article][PubMed]
    [Google Scholar]
  27. Hendrickson E. L., Beck D. A., Wang T., Lidstrom M. E., Hackett M., Chistoserdova L. 2010; Expressed genome of Methylobacillus flagellatus as defined through comprehensive proteomics and new insights into methylotrophy. J Bacteriol 192:4859–4867 [View Article][PubMed]
    [Google Scholar]
  28. Hisatsuka K., Nakahara T., Yamada K. 1972; Protein-like activator for n-alkane oxidation by Pseudomonas aeruginosa S7B1. Agric Biol Chem 36:1361–1369 [View Article]
    [Google Scholar]
  29. Hisatsuka K., Nakahara T., Minoda Y., Yamada K. 1977; Formation of protein-like activator for n-alkane oxidation and its properties. Agric Biol Chem 41:445–450 [View Article]
    [Google Scholar]
  30. Isaacson T., Kosma D. K., Matas A. J., Buda G. J., He Y., Yu B., Pravitasari A., Batteas J. D., Stark R. E., other authors. 2009; Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J 60:363–377 [View Article][PubMed]
    [Google Scholar]
  31. Jendrossek D. 2009; Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202 [View Article][PubMed]
    [Google Scholar]
  32. Jendrossek D., Handrick R. 2002; Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432 [View Article][PubMed]
    [Google Scholar]
  33. Jeong Y., Kim J., Kim S., Kang Y., Nagamatsu T., Hwang I. 2003; Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis 87:890–895 [View Article]
    [Google Scholar]
  34. Kabelitz N., Santos P. M., Heipieper H. J. 2003; Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus . FEMS Microbiol Lett 220:223–227 [View Article][PubMed]
    [Google Scholar]
  35. Kim Y. J., Paek S. H., Jin S., Park B. S., Ha U. H. 2014; A novel Pseudomonas aeruginosa-derived effector cooperates with flagella to mediate the upregulation of interleukin 8 in human epithelial cells. Microb Pathog 66:24–28 [View Article][PubMed]
    [Google Scholar]
  36. Kojima T., Nishiyama T., Maehara A., Ueda S., Nakano H., Yamane T. 2004; Expression profiles of polyhydroxyalkanoate synthesis-related genes in Paracoccus denitrificans . J Biosci Bioeng 97:45–53 [View Article][PubMed]
    [Google Scholar]
  37. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  38. Li Y., Beisson F., Ohlrogge J., Pollard M. 2007; Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase. Plant Physiol 144:1267–1277 [View Article][PubMed]
    [Google Scholar]
  39. Lopes M. S., Steinert N., Rojas J. D., Hillen W., Gomez J. G., Silva L. F. 2011; Role of CcpA in polyhydroxybutyrate biosynthesis in a newly isolated Bacillus sp., MA3.3. J Mol Microbiol Biotechnol 20:63–69 [View Article][PubMed]
    [Google Scholar]
  40. Lu H., Kalyuzhnaya M., Chandran K. 2012; Comparative proteomic analysis reveals insights into anoxic growth of Methyloversatilis universalis FAM5 on methanol and ethanol. Environ Microbiol 14:2935–2945 [View Article][PubMed]
    [Google Scholar]
  41. Macnab R. M. 2004; Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta 1694:207–217 [View Article][PubMed]
    [Google Scholar]
  42. Mariappan V., Vellasamy K. M., Hashim O. H., Vadivelu J. 2011; Profiling of Burkholderia cepacia secretome at mid-logarithmic and early-stationary phases of growth. PLoS One 6:e26518 [View Article][PubMed]
    [Google Scholar]
  43. Mougous J. D., Cuff M. E., Raunser S., Shen A., Zhou M., Gifford C. A., Goodman A. L., Joachimiak G., Ordoñez C. L. & other authors 2006; A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530 [View Article][PubMed]
    [Google Scholar]
  44. Nandi B., Nandy R. K., Sarkar A., Ghose A. C. 2005; Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae . Microbiology 151:2975–2986 [View Article][PubMed]
    [Google Scholar]
  45. Neeld D., Jin Y., Bichsel C., Jia J., Guo J., Bai F., Wu W., Ha U. H., Terada N., Jin S. 2014; Pseudomonas aeruginosa injects NDK into host cells through a type III secretion system. Microbiology 160:1417–1426 [View Article][PubMed]
    [Google Scholar]
  46. Neumann B., Pospiech A., Schairer H. U. 1992; Rapid isolation of genomic DNA from Gram-negative bacteria. Trends Genet 8:332–333 [View Article][PubMed]
    [Google Scholar]
  47. O'Toole G. A., Kolter R. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304 [View Article][PubMed]
    [Google Scholar]
  48. Peeters N., Guidot A., Vailleau F., Valls M. 2013; Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol 14:651–662 [View Article][PubMed]
    [Google Scholar]
  49. Peoples O. P., Sinskey A. J. 1989a; Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264:15293–15297[PubMed]
    [Google Scholar]
  50. Peoples O. P., Sinskey A. J. 1989b; Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264:15298–15303[PubMed]
    [Google Scholar]
  51. Pollard M., Beisson F., Li Y., Ohlrogge J. B. 2008; Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246 [View Article][PubMed]
    [Google Scholar]
  52. Pumirat P., Saetun P., Sinchaikul S., Chen S. T., Korbsrisate S., Thongboonkerd V. 2009; Altered secretome of Burkholderia pseudomallei induced by salt stress. Biochim Biophys Acta 1794:898–904 [View Article][PubMed]
    [Google Scholar]
  53. Raberg M., Bechmann J., Brandt U., Schlüter J., Uischner B., Voigt B., Hecker M., Steinbüchel A. 2011; Versatile metabolic adaptations of Ralstonia eutropha H16 to a loss of PdhL, the E3 component of the pyruvate dehydrogenase complex. Appl Environ Microbiol 77:2254–2263 [View Article][PubMed]
    [Google Scholar]
  54. Ratcliff W. C., Kadam S. V., Denison R. F. 2008; Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol Ecol 65:391–399 [View Article][PubMed]
    [Google Scholar]
  55. Records A. R. 2011; The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact 24:751–757 [View Article][PubMed]
    [Google Scholar]
  56. Remenant B., Coupat-Goutaland B., Guidot A., Cellier G., Wicker E., Allen C., Fegan M., Pruvost O., Elbaz M. & other authors 2010; Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics 11:379 [View Article][PubMed]
    [Google Scholar]
  57. Ruiz J. A., López N. I., Fernández R. O., Méndez B. S. 2001; Polyhydroxyalkanoate degradation is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms. Appl Environ Microbiol 67:225–230 [View Article][PubMed]
    [Google Scholar]
  58. Schell M. A., Ulrich R. L., Ribot W. J., Brueggemann E. E., Hines H. B., Chen D., Lipscomb L., Kim H. S., Mrázek J., other authors. 2007; Type VI secretion is a major virulence determinant in Burkholderia mallei . Mol Microbiol 64:1466–1485 [View Article][PubMed]
    [Google Scholar]
  59. Shakeri S., Roghanian R., Emtiazi G. 2012; Surveillance of single-cell behavior in different subpopulations of Ralstonia pickettii AR1 during growth and polyhydroxybutyrate production phases by flow cytometry. J Basic Microbiol 52:206–215 [View Article][PubMed]
    [Google Scholar]
  60. Sztajer H., Lünsdorf H., Erdmann H., Menge U., Schmid R. 1992; Purification and properties of lipase from Penicillium simplicissimum . Biochim Biophys Acta 1124:253–261 [View Article][PubMed]
    [Google Scholar]
  61. Tanadchangsaeng N., Kitagawa A., Yamamoto T., Abe H., Tsuge T. 2009; Identification, biosynthesis, and characterization of polyhydroxyalkanoate copolymer consisting of 3-hydroxybutyrate and 3-hydroxy-4-methylvalerate. Biomacromolecules 10:2866–2874 [View Article][PubMed]
    [Google Scholar]
  62. Tani A., Ishige T., Sakai Y., Kato N. 2001; Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1. J Bacteriol 183:1819–1823 [View Article][PubMed]
    [Google Scholar]
  63. Throne-Holst M., Markussen S., Winnberg A., Ellingsen T. E., Kotlar H. K., Zotchev S. B. 2006; Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases. Appl Microbiol Biotechnol 72:353–360 [View Article][PubMed]
    [Google Scholar]
  64. Tribelli P. M., López N. I. 2011; Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions. Extremophiles 15:541–547 [View Article][PubMed]
    [Google Scholar]
  65. Tseng T. T., Tyler B. M., Setubal J. C. 2009; Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol 9 (Suppl. 1:S2 [View Article][PubMed]
    [Google Scholar]
  66. Tsuge T. 2002; Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 94:579–584 [View Article][PubMed]
    [Google Scholar]
  67. Ushio K., Hirata T., Yoshida K., Sakaue M., Hirose C., Suzuki T., Ishizuka M. 1996; Superinducers for induction of thermostable lipase production by Pseudomonas species NT-163 and other Pseudomonas like bacteria. Biotechnol Tech 10:267–272 [View Article]
    [Google Scholar]
  68. Van Hamme J. D., Singh A., Ward O. P. 2003; Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549 [View Article][PubMed]
    [Google Scholar]
  69. Wandersman C. 1989; Secretion, processing and activation of bacterial extracellular proteases. Mol Microbiol 3:1825–1831 [View Article][PubMed]
    [Google Scholar]
  70. Webb J. S., Givskov M., Kjelleberg S. 2003; Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6:578–585 [View Article][PubMed]
    [Google Scholar]
  71. Wehmhöner D., Häussler S., Tümmler B., Jänsch L., Bredenbruch F., Wehland J., Steinmetz I. 2003; Inter- and intraclonal diversity of the Pseudomonas aeruginosa proteome manifests within the secretome. J Bacteriol 185:5807–5814 [View Article][PubMed]
    [Google Scholar]
  72. Wentzel A., Ellingsen T. E., Kotlar H. K., Zotchev S. B., Throne-Holst M. 2007; Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221 [View Article][PubMed]
    [Google Scholar]
  73. Wu H. Y., Chung P. C., Shih H. W., Wen S. R., Lai E. M. 2008; Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens . J Bacteriol 190:2841–2850 [View Article][PubMed]
    [Google Scholar]
  74. Yamada M., Yamashita K., Wakuda A., Ichimura K., Maehara A., Maeda M., Taguchi S. 2007; Autoregulator protein PhaR for biosynthesis of polyhydroxybutyrate [P(3HB)] possibly has two separate domains that bind to the target DNA and P(3HB): functional mapping of amino acid residues responsible for DNA binding. J Bacteriol 189:1118–1127 [View Article][PubMed]
    [Google Scholar]
  75. Zerbino D. R., Birney E. 2008; Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829 [View Article][PubMed]
    [Google Scholar]
  76. Zhang L., Xu J., Xu J., Zhang H., He L., Feng J. 2014; TssB is essential for virulence and required for type VI secretion system in Ralstonia solanacearum . Microb Pathog 74:1–7 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000225
Loading
/content/journal/micro/10.1099/mic.0.000225
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error