
f MsaB activates capsule production at the transcription level in Staphylococcus aureus
- Authors: Justin L. Batte1 , Dhritiman Samanta1 , Mohamed O. Elasri1
-
- VIEW AFFILIATIONS
-
1 Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
- Correspondence Mohamed O. Elasri [email protected]
- First Published Online: 01 March 2016, Microbiology 162: 575-589, doi: 10.1099/mic.0.000243
- Subject: Regulation
- Received:
- Accepted:
- Cover date:




MsaB activates capsule production at the transcription level in Staphylococcus aureus, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/micro/162/3/575_mic000243-1.gif
-
Staphylococcus aureus produces several virulence factors that allow it to cause a variety of infections. One of the major virulence factors is the capsule, which contributes to the survival of the pathogen within the host as a way to escape phagocytosis. The production of the capsular polysaccharide is encoded in a 16 gene operon, which is regulated in response to several environmental stimuli including nutrient availability. For instance, the capsule is produced in the late- and post-exponential growth phases, but not in the early- or mid-exponential growth phase. Several regulators are involved in capsule production, but the regulation of the cap operon is still poorly understood. In this study, we show that MsaB activates the cap operon by binding directly to a 10 bp repeat in the promoter region. We show that despite the fact that MsaB is expressed throughout four growth phases, it only activates capsule production in the late- and post-exponential growth phases. Furthermore, we find that MsaB does not bind to its target site in the early and mid-exponential growth phases. This correlates with decreased nutrient availability and capsule production. These data suggest either that MsaB binding ability changes in response to nutrients or that other cap operon regulators interfere with the binding of MsaB to its target site. This study increases our understanding of the regulation of capsule production and the mechanism of action of MsaB.
-
Edited by: A. O'Neill
-
Abbreviations: ChIP chromatin immunoprecipitation CP capsular polysaccharide EMSA electrophoretic mobility shift assay NARSA Network on Antimicrobial Resistance in Staphylococcus aureus PMN polymorphonuclear neutrophil qRT-PCR quantitative reverse transcriptase PCR RLU relative luminescence unit SQ starting quantity.
© 2016 The Authors
-
Arbeit R. D. , Karakawa W. W. , Vann W. F. , Robbins J. B. . ( 1984;). Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus . Diagn Microbiol Infect Dis 2: 85––91 [CrossRef] [PubMed].
-
Bae T. , Schneewind O. . ( 2006;). Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55: 58––63 [CrossRef] [PubMed].
-
Bagnoli F. , Bertholet S. , Grandi G. . ( 2012;). Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front Cell Infect Microbiol 2: 16 [CrossRef] [PubMed].
-
Bischoff M. , Dunman P. , Kormanec J. , Macapagal D. , Murphy E. , Mounts W. , Berger-Bachi B. , Projan S. . ( 2004;). Microarray-based analysis of the Staphylococcus aureus σB regulon. J Bacteriol 186: 4085––4099 [CrossRef] [PubMed].
-
Boyle-Vavra S. , Li X. , Alam M. T. , Read T. D. , Sieth J. , Cywes-Bentley C. , Dobbins G. , David M. Z. , Kumar N. , other authors . ( 2015;). USA300 and USA500 clonal lineages of Staphylococcus aureus do not produce a capsular polysaccharide due to conserved mutations in the cap5 locus. MBio 6: e02585-14 [PubMed].[CrossRef]
-
Bronner S. , Monteil H. , Prevost G. . ( 2004;). Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28: 183––200 [CrossRef] [PubMed].
-
Charpentier E. , Anton A. I. , Barry P. , Alfonso B. , Fang Y. , Novick R. P. . ( 2004;). Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol 70: 6076––6085 [CrossRef] [PubMed].
-
Chen Z. , Luong T. T. , Lee C. Y. . ( 2007;). The sbcDC locus mediates repression of type 5 capsule production as part of the SOS response in Staphylococcus aureus . J Bacteriol 189: 7343––7350 [CrossRef] [PubMed].
-
Chen K. , Mizianty M. J. , Kurgan L. . ( 2012;). Prediction and analysis of nucleotide-binding residues using sequence and sequence-derived structural descriptors. Bioinformatics 28: 331––341 [CrossRef] [PubMed].
-
Cheung A. L. , Bayer A. S. , Zhang G. , Gresham H. , Xiong Y. Q. . ( 2004;). Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus . FEMS Immunol Med Microbiol 40: 1––9 [CrossRef] [PubMed].
-
Chini V. , Foka A. , Dimitracopoulos G. , Spiliopoulou I. . ( 2007;). Absolute and relative real-time PCR in the quantification of tst gene expression among methicillin-resistant Staphylococcus aureus: evaluation by two mathematical models. Lett Appl Microbiol 45: 479––484 [CrossRef] [PubMed].
-
Cocchiaro J. L. , Gomez M. I. , Risley A. , Solinga R. , Sordelli D. O. , Lee J. C. . ( 2006;). Molecular characterization of the capsule locus from non-typeable Staphylococcus aureus . Mol Microbiol 59: 948––960 [CrossRef] [PubMed].
-
Cunnion K. M. , Lee J. C. , Frank M. M. . ( 2001;). Capsule production and growth phase influence binding of complement to Staphylococcus aureus . Infect Immun 69: 6796––6803 [CrossRef] [PubMed].
-
Dassy B. , Fournier J. M. . ( 1996;). Respiratory activity is essential for post-exponential-phase production of type 5 capsular polysaccharide by Staphylococcus aureus . Infect Immun 64: 2408––2414 [PubMed].
-
Dassy B. , Hogan T. , Foster T. J. , Fournier J. M. . ( 1993;). Involvement of the accessory gene regulator (agr) in expression of type 5 capsular polysaccharide by Staphylococcus aureus . J Gen Microbiol 139: 1301––1306 [CrossRef] [PubMed].
-
David M. Z. , Daum R. S. . ( 2010;). Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23: 616––687 [CrossRef] [PubMed].
-
Ding Y. , Liu X. , Chen F. , Di H. , Xu B. , Zhou L. , Deng X. , Wu M. , Yang C. G. , Lan L. . ( 2014;). Metabolic sensor governing bacterial virulence in Staphylococcus aureus . Proc Natl Acad Sci U S A 111: E4981––E4990 [CrossRef] [PubMed].
-
Fattom A. , Schneerson R. , Watson D. C. , Karakawa W. W. , Fitzgerald D. , Pastan I. , Li X. , Shiloach J. , Bryla D. A. , Robbins J. B. . ( 1993;). Laboratory and clinical evaluation of conjugate vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides bound to Pseudomonas aeruginosa recombinant exoprotein A. Infect Immun 61: 1023––1032 [PubMed].
-
Fattom A. I. , Sarwar J. , Ortiz A. , Naso R. . ( 1996;). Staphylococcus aureus capsular polysaccharide (CP) vaccine and CP-specific antibodies protect mice against bacterial challenge. Infect Immun 64: 1659––1665 [PubMed].
-
Goerke C. , Campana S. , Bayer M. G. , Doring G. , Botzenhart K. , Wolz C. . ( 2000;). Direct quantitative transcript analysis of the agr regulon of Staphylococcus aureus during human infection in comparison to the expression profile in vitro. Infect Immun 68: 1304––1311 [CrossRef] [PubMed].
-
Graumann P. , Wendrich T. M. , Weber M. H. , Schroder K. , Marahiel M. A. . ( 1997;). A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25: 741––756 [CrossRef] [PubMed].
-
Gupta R. K. , Alba J. , Xiong Y. Q. , Bayer A. S. , Lee C. Y. . ( 2013;). MgrA activates expression of capsule genes, but not the α-toxin gene in experimental Staphylococcus aureus endocarditis. J Infect Dis 208: 1841––1848 [CrossRef] [PubMed].
-
Jutras B. L. , Chenail A. M. , Rowland C. L. , Carroll D. , Miller M. C. , Bykowski T. , Stevenson B. . ( 2013;). Eubacterial SpoVG homologs constitute a new family of site-specific DNA-binding proteins. PLoS One 8: e66683 [CrossRef] [PubMed].
-
Kampen A. H. , Tollersrud T. , Lund A. . ( 2005;). Staphylococcus aureus capsular polysaccharide types 5 and 8 reduce killing by bovine neutrophils in vitro. Infect Immun 73: 1578––1583 [CrossRef] [PubMed].
-
Karakawa W. W. , Vann W. F. . ( 1982;). Capsular polysaccharides of Staphylococcus aureus . Semin Infect Dis 4: 285––293 [PubMed].
-
Karakawa W. W. , Sutton A. , Schneerson R. , Karpas A. , Vann W. F. . ( 1988;). Capsular antibodies induce type-specific phagocytosis of capsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect Immun 56: 1090––1095 [PubMed].
-
Lattar S. M. , Noto Llana M. , Denoel P. , Germain S. , Buzzola F. R. , Lee J. C. , Sordelli D. O. . ( 2014;). Protein antigens increase the protective efficacy of a capsule-based vaccine against Staphylococcus aureus in a rat model of osteomyelitis. Infect Immun 82: 83––91 [CrossRef] [PubMed].
-
Lee J. C. , Park J. S. , Shepherd S. E. , Carey V. , Fattom A. . ( 1997;). Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect Immun 65: 4146––4151 [PubMed].
-
Lei M. G. , Lee C. Y. . ( 2015;). RbsR activates capsule but represses the rbsUDK operon in Staphylococcus aureus . J Bacteriol 197: 3666––3675 [CrossRef] [PubMed].
-
Lowy F. D. . ( 1998;). Staphylococcus aureus infections. N Engl J Med 339: 520––532 [CrossRef] [PubMed].
-
Lowy F. D. . ( 2011;). How Staphylococcus aureus adapts to its host. N Engl J Med 364: 1987––1990 [CrossRef] [PubMed].
-
Luong T. T. , Lee C. Y. . ( 2002;). Overproduction of type 8 capsular polysaccharide augments Staphylococcus aureus virulence. Infect Immun 70: 3389––3395 [CrossRef] [PubMed].
-
Luong T. T. , Lee C. Y. . ( 2006;). The arl locus positively regulates Staphylococcus aureus type 5 capsule via an mgrA-dependent pathway. Microbiology 152: 3123––3131 [CrossRef] [PubMed].
-
Luong T. , Sau S. , Gomez M. , Lee J. C. , Lee C. Y. . ( 2002;). Regulation of Staphylococcus aureus capsular polysaccharide expression by agr and sarA . Infect Immun 70: 444––450 [CrossRef] [PubMed].
-
Luong T. T. , Newell S. W. , Lee C. Y. . ( 2003;). Mgr, a novel global regulator in Staphylococcus aureus . J Bacteriol 185: 3703––3710 [CrossRef] [PubMed].
-
Luong T. T. , Sau K. , Roux C. , Sau S. , Dunman P. M. , Lee C. Y. . ( 2011;). Staphylococcus aureus ClpC divergently regulates capsule via sae and codY in strain Newman but activates capsule via codY in strain UAMS-1 and in strain Newman with repaired saeS . J Bacteriol 193: 686––694 [CrossRef] [PubMed].
-
Majerczyk C. D. , Dunman P. M. , Luong T. T. , Lee C. Y. , Sadykov M. R. , Somerville G. A. , Bodi K. , Sonenshein A. L. . ( 2010;). Direct targets of CodY in Staphylococcus aureus . J Bacteriol 192: 2861––2877 [CrossRef] [PubMed].
-
Meier S. , Goerke C. , Wolz C. , Seidl K. , Homerova D. , Schulthess B. , Kormanec J. , Berger-Bachi B. , Bischoff M. . ( 2007;). σB and the σB-dependent arlRS and yabJ-spoVG loci affect capsule formation in Staphylococcus aureus . Infect Immun 75: 4562––4571 [CrossRef] [PubMed].
-
Montgomery C. P. , Boyle-Vavra S. , Adem P. V. , Lee J. C. , Husain A. N. , Clasen J. , Daum R. S. . ( 2008;). Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J Infect Dis 198: 561––570 [CrossRef] [PubMed].
-
Nanra J. S. , Buitrago S. M. , Crawford S. , Ng J. , Fink P. S. , Hawkins J. , Scully I. L. , McNeil L. K. , Aste-Amézaga J. M. , other authors . ( 2013;). Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus . Hum Vaccin Immunother 9: 480––487 [CrossRef] [PubMed].
-
Nemeth J. , Lee J. C. . ( 1995;). Antibodies to capsular polysaccharides are not protective against experimental Staphylococcus aureus endocarditis. Infect Immun 63: 375––380 [PubMed].
-
Nilsson I. M. , Lee J. C. , Bremell T. , Ryden C. , Tarkowski A. . ( 1997;). The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect Immun 65: 4216––4221 [PubMed].
-
Novick R. P. , Geisinger E. . ( 2008;). Quorum sensing in staphylococci. Annu Rev Genet 42: 541––564 [CrossRef] [PubMed].
-
Nygaard T. K. , Pallister K. B. , Dumont A. L. , Dewald M. , Watkins R. L. , Pallister E. Q. , Malone C. , Griffith S. , Horswill A. R. , other authors . ( 2012;). Alpha-toxin induces programmed cell death of human T cells, B cells, and monocytes during USA300 infection. PLoS One 7: e36532 [CrossRef] [PubMed].
-
O'Riordan K. , Lee J. C. . ( 2004;). Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 17: 218––234 [CrossRef] [PubMed].
-
Ouyang S. , Sau S. , Lee C. Y. . ( 1999;). Promoter analysis of the cap8 operon, involved in type 8 capsular polysaccharide production in Staphylococcus aureus . J Bacteriol 181: 2492––2500 [PubMed].
-
Pané-Farré J. , Jonas B. , Förstner K. , Engelmann S. , Hecker M. . ( 2006;). The σB regulon in Staphylococcus aureus and its regulation. Int J Med Microbiol 296: 237––258 [CrossRef] [PubMed].
-
Pohl K. , Francois P. , Stenz L. , Schlink F. , Geiger T. , Herbert S. , Goerke C. , Schrenzel J. , Wolz C. . ( 2009;). CodY in Staphylococcus aureus: a regulatory link between metabolism and virulence gene expression. J Bacteriol 191: 2953––2963 [CrossRef] [PubMed].
-
Poutrel B. , Gilbert F. B. , Lebrun M. . ( 1995;). Effects of culture conditions on production of type 5 capsular polysaccharide by human and bovine Staphylococcus aureus strains. Clin Diagn Lab Immunol 2: 166––171 [PubMed].
-
Ratnayake-Lecamwasam M. , Serror P. , Wong K. W. , Sonenshein A. L. . ( 2001;). Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev 15: 1093––1103 [CrossRef] [PubMed].
-
Rost B. , Yachdav G. , Liu J. . ( 2004;). The PredictProtein server. Nucleic Acids Res 32: W321––W326 [CrossRef] [PubMed].
-
Sahukhal G. S. , Elasri M. O. . ( 2014;). Identification and characterization of an operon, msaABCR, that controls virulence and biofilm development in Staphylococcus aureus . BMC Microbiol 14: 154 [CrossRef] [PubMed].
-
Sahukhal G. S. , Batte J. L. , Elasri M. O. . ( 2015;). msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus . FEMS Microbiol Lett 362: 1––10 [CrossRef] [PubMed].
-
Samanta D. , Elasri M. O. . ( 2014;). The msaABCR operon regulates resistance in vancomycin-intermediate Staphylococcus aureus strains. Antimicrob Agents Chemother 58: 6685––6695 [CrossRef] [PubMed].
-
Sambanthamoorthy K. , Smeltzer M. S. , Elasri M. O. . ( 2006;). Identification and characterization of msa (SA1233), a gene involved in expression of SarA and several virulence factors in Staphylococcus aureus . Microbiology 152: 2559––2572 [CrossRef] [PubMed].
-
Sambanthamoorthy K. , Schwartz A. , Nagarajan V. , Elasri M. O. . ( 2008;). The role of msa in Staphylococcus aureus biofilm formation. BMC Microbiol 8: 221 [CrossRef] [PubMed].
-
Sambrook J. , Fritsch E. F. , Maniatis T. . ( 1989;). Concentration of DNA solution. . In Molecular Cloning: a Laboratory Manual, p. C1 , 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
-
Sau S. , Bhasin N. , Wann E. R. , Lee J. C. , Foster T. J. , Lee C. Y. . ( 1997a;). The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology 143: 2395––2405 [CrossRef] [PubMed].
-
Sau S. , Sun J. , Lee C. Y. . ( 1997b;). Molecular characterization and transcriptional analysis of type 8 capsule genes in Staphylococcus aureus . J Bacteriol 179: 1614––1621 [PubMed].
-
Schneider C. A. , Rasband W. S. , Eliceiri K. W. . ( 2012;). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671––675 [CrossRef] [PubMed].
-
Sengupta M. , Jain V. , Wilkinson B. J. , Jayaswal R. K. . ( 2012;). Chromatin immunoprecipitation identifies genes under direct VraSR regulation in Staphylococcus aureus . Can J Microbiol 58: 703––708 [CrossRef] [PubMed].
-
Shivers R. P. , Sonenshein A. L. . ( 2004;). Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol Microbiol 53: 599––611 [CrossRef] [PubMed].
-
Somerville G. A. , Proctor R. A. . ( 2009;). At the crossroads of bacterial metabolism and virulence factor synthesis in staphylococci. Microbiol Mol Biol Rev 73: 233––248 [CrossRef] [PubMed].
-
Sompolinsky D. , Samra Z. , Karakawa W. W. , Vann W. F. , Schneerson R. , Malik Z. . ( 1985;). Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types. J Clin Microbiol 22: 828––834 [PubMed].
-
Sun F. , Ji Q. , Jones M. B. , Deng X. , Liang H. , Frank B. , Telser J. , Peterson S. N. , Bae T. , He C. . ( 2012;). AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus . J Am Chem Soc 134: 305––314 [CrossRef] [PubMed].
-
Thakker M. , Park J. S. , Carey V. , Lee J. C. . ( 1998;). Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect Immun 66: 5183––5189 [PubMed].
-
Tuchscherr L. , Loffler B. , Buzzola F. R. , Sordelli D. O. . ( 2010;). Staphylococcus aureus adaptation to the host and persistence: role of loss of capsular polysaccharide expression. Future Microbiol 5: 1823––1832 [CrossRef] [PubMed].
-
Voyich J. M. , Braughton K. R. , Sturdevant D. E. , Whitney A. R. , Said-Salim B. , Porcella S. F. , Long R. D. , Dorward D. W. , Gardner D. J. , other authors . ( 2005;). Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol 175: 3907––3919 [CrossRef] [PubMed].
-
Wann E. R. , Dassy B. , Fournier J. M. , Foster T. J. . ( 1999;). Genetic analysis of the cap5 locus of Staphylococcus aureus . FEMS Microbiol Lett 170: 97––103 [CrossRef] [PubMed].
-
Watts A. , Ke D. , Wang Q. , Pillay A. , Nicholson-Weller A. , Lee J. C. . ( 2005;). Staphylococcus aureus strains that express serotype 5 or serotype 8 capsular polysaccharides differ in virulence. Infect Immun 73: 3502––3511 [CrossRef] [PubMed].
-
Zhao L. , Xue T. , Shang F. , Sun H. , Sun B. . ( 2010;). Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun 78: 3506––3515 [CrossRef] [PubMed].

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/micro/10.1099/mic.0.000243dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/micro AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/micro/10.1099/mic.0.000243dcterms_title,dcterms_subject-pub_serialIdent:journal/micro AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....