
f Genome-wide characterization of monomeric transcriptional regulators in Mycobacterium tuberculosis
- Authors: Lipeng Feng1 , Zhenkang Chen1 , Zhongwei Wang1 , Yangbo Hu1 , Shiyun Chen1
-
- VIEW AFFILIATIONS
-
1 Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology,Chinese Academy of Sciences, Wuhan, PRChina
- Correspondence Yangbo Hu [email protected]
- First Published Online: 01 May 2016, Microbiology 162: 889-897, doi: 10.1099/mic.0.000257
- Subject: Regulation
- Received:
- Accepted:
- Cover date:




Genome-wide characterization of monomeric transcriptional regulators in Mycobacterium tuberculosis, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/micro/162/5/889_mic000257-1.gif
-
Gene transcription catalysed by RNA polymerase is regulated by transcriptional regulators, which play central roles in the control of gene transcription in both eukaryotes and prokaryotes. In regulating gene transcription, many regulators form dimers that bind to DNA with repeated motifs. However, some regulators function as monomers, but their mechanisms of gene expression control are largely uncharacterized. Here we systematically characterized monomeric versus dimeric regulators in the tuberculosis causative agent Mycobacterium tuberculosis. Of the >160 transcriptional regulators annotated in M. tuberculosis, 154 transcriptional regulators were tested, 22 % probably act as monomers and most are annotated as hypothetical regulators. Notably, all members of the WhiB-like protein family are classified as monomers. To further investigate mechanisms of monomeric regulators, we analysed the actions of these WhiB proteins and found that the majority interact with the principal sigma factor σA, which is also a monomeric protein within the RNA polymerase holoenzyme. Taken together, our study for the first time globally classified monomeric regulators in M. tuberculosis and suggested a mechanism for monomeric regulators in controlling gene transcription through interacting with monomeric sigma factors.
-
Two supplementary tables are available with the online Supplementary Material.
-
Edited by: R. Manganelli
-
Abbreviations: BACTH bacterial adenylate cyclase-based two-hybrid MPFC mycobacterial protein fragment complementation
© 2016 The Authors
-
Alam M. S., Garg S. K., Agrawal P.. ( 2009;). Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS J 276: 76––93 [CrossRef] [PubMed].
-
Burian J., Ramón-García S., Sweet G., Gómez-Velasco A., Av-Gay Y., Thompson C. J.. ( 2012;). The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance. J Biol Chem 287: 299––310 [CrossRef] [PubMed].
-
Burian J., Yim G., Hsing M., Axerio-Cilies P., Cherkasov A., Spiegelman G. B., Thompson C. J.. ( 2013;). The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV). Nucleic Acids Res 41: 10062––10076 [CrossRef] [PubMed].
-
Campbell D. R., Chapman K. E., Waldron K. J., Tottey S., Kendall S., Cavallaro G., Andreini C., Hinds J., Stoker N. G., other authors. ( 2007;). Mycobacterial cells have dual nickel-cobalt sensors: sequence relationships and metal sites of metal-responsive repressors are not congruent. J Biol Chem 282: 32298––32310 [CrossRef] [PubMed].
-
Casonato S., Cervantes Sánchez A., Haruki H., Rengifo González M., Provvedi R., Dainese E., Jaouen T., Gola S., Bini E., other authors. ( 2012;). WhiB5, a transcriptional regulator that contributes to Mycobacterium tuberculosis virulence and reactivation. Infect Immun 80: 3132––3144 [CrossRef] [PubMed].
-
Chawla M., Parikh P., Saxena A., Munshi M., Mehta M., Mai D., Srivastava A. K., Narasimhulu K. V., Redding K. E., other authors. ( 2012;). Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol Microbiol 85: 1148––1165 [CrossRef] [PubMed].
-
Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., other authors. ( 1998;). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537––544 [CrossRef] [PubMed].
-
Florczyk M. A., McCue L. A., Purkayastha A., Currenti E., Wolin M. J., McDonough K. A.. ( 2003;). A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression. Infect Immun 71: 5332––5343 [CrossRef] [PubMed].
-
Furuta E., Yamamoto K., Tatebe D., Watabe K., Kitayama T., Utsumi R.. ( 2005;). Targeting protein homodimerization: a novel drug discovery system. FEBS Lett 579: 2065––2070 [CrossRef] [PubMed].
-
Gangwar S. P., Meena S. R., Saxena A. K.. ( 2014;). Comparison of four different crystal forms of the Mycobacterium tuberculosis ESX-1 secreted protein regulator EspR. Acta Crystallogr F Struct Biol Commun 70: 433––437 [CrossRef] [PubMed].
-
Geiman D. E., Raghunand T. R., Agarwal N., Bishai W. R.. ( 2006;). Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob Agents Chemother 50: 2836––2841 [CrossRef] [PubMed].
-
Gengenbacher M., Kaufmann S. H.. ( 2012;). Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36: 514––532 [CrossRef] [PubMed].
-
Gomez J. E., Bishai W. R.. ( 2000;). whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci U S A 97: 8554––8559 [CrossRef] [PubMed].
-
Guo M., Feng H., Zhang J., Wang W., Wang Y., Li Y., Gao C., Chen H., Feng Y., He Z. G.. ( 2009;). Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res 19: 1301––1308 [CrossRef] [PubMed].
-
He X., Wang S.. ( 2014;). DNA consensus sequence motif for binding response regulator PhoP, a virulence regulator of Mycobacterium tuberculosis. Biochemistry 53: 8008––8020 [CrossRef] [PubMed].
-
Hu Y., Lu P., Wang Y., Ding L., Atkinson S., Chen S.. ( 2009;). OmpR positively regulates urease expression to enhance acid survival of Yersinia pseudotuberculosis. Microbiology 155: 2522––2531 [CrossRef] [PubMed].
-
Hu Y., Morichaud Z., Perumal A. S., Roquet-Baneres F., Brodolin K.. ( 2014;). Mycobacterium RbpA cooperates with the stress-response σB subunit of RNA polymerase in promoter DNA unwinding. Nucleic Acids Res 42: 10399––10408 [CrossRef] [PubMed].
-
Karimova G., Pidoux J., Ullmann A., Ladant D.. ( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95: 5752––5756 [CrossRef] [PubMed].
-
Larsson C., Luna B., Ammerman N. C., Maiga M., Agarwal N., Bishai W. R.. ( 2012;). Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1-7 in redox environments. PLoS One 7: e37516 [CrossRef] [PubMed].
-
Manganelli R., Provedi R., Rodrigue S., Beaucher J., Gaudreau L., Smith I.. ( 2004;). σ Factors and global gene regulation in Mycobacterium tuberculosis. J Bacteriol 186: 895––902 [CrossRef] [PubMed].
-
Menon S., Wang S.. ( 2011;). Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain. Biochemistry 50: 5948––5957 [CrossRef] [PubMed].
-
Murakami K. S., Masuda S., Darst S. A.. ( 2002;). Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution. Science 296: 1280––1284 [CrossRef] [PubMed].
-
Parish T.. ( 2014;). Two-component regulatory systems of Mycobacteria. Microbiol Spectr 2: MGM2-0010-2013[PubMed].
-
Peterson E. J., Reiss D. J., Turkarslan S., Minch K. J., Rustad T., Plaisier C. L., Longabaugh W. J., Sherman D. R., Baliga N. S.. ( 2014;). A high-resolution network model for global gene regulation in Mycobacterium tuberculosis. Nucleic Acids Res 42: 11291––11303 [CrossRef] [PubMed].
-
Raghunand T. R., Bishai W. R.. ( 2006;). Mapping essential domains of Mycobacterium smegmatis WhmD: insights into WhiB structure and function. J Bacteriol 188: 6966––6976 [CrossRef] [PubMed].
-
Sala C., Haouz A., Saul F. A., Miras I., Rosenkrands I., Alzari P. M., Cole S. T.. ( 2009;). Genome-wide regulon and crystal structure of BlaI (Rv1846c) from Mycobacterium tuberculosis. Mol Microbiol 71: 1102––1116 [CrossRef] [PubMed].
-
Shen A., Higgins D. E., Panne D.. ( 2009;). Recognition of AT-rich DNA binding sites by the MogR repressor. Structure 17: 769––777 [CrossRef] [PubMed].
-
Singh A., Mai D., Kumar A., Steyn A. J.. ( 2006;). Dissecting virulence pathways of Mycobacterium tuberculosis through protein–protein association. Proc Natl Acad Sci U S A 103: 11346––11351 [CrossRef] [PubMed].
-
Smith L. J., Stapleton M. R., Fullstone G. J., Crack J. C., Thomson A. J., Le Brun N. E., Hunt D. M., Harvey E., Adinolfi S., other authors. ( 2010;). Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron–sulfur cluster. Biochem J 432: 417––427 [CrossRef] [PubMed].
-
Steyn A. J., Collins D. M., Hondalus M. K., Jacobs W. R. Jr, Kawakami R. P., Bloom B. R.. ( 2002;). Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci U S A 99: 3147––3152 [CrossRef] [PubMed].
-
Tao J., Han J., Wu H., Hu X., Deng J., Fleming J., Maxwell A., Bi L., Mi K.. ( 2013;). Mycobacterium fluoroquinolone resistance protein B, a novel small GTPase, is involved in the regulation of DNA gyrase and drug resistance. Nucleic Acids Res 41: 2370––2381 [CrossRef] [PubMed].
-
van Hijum S. A., Medema M. H., Kuipers O. P.. ( 2009;). Mechanisms and evolution of control logic in prokaryotic transcriptional regulation. Microbiol Mol Biol Rev 73: 481––509 [CrossRef] [PubMed].
-
Zhang Y., Hatch K. A., Bacon J., Wernisch L.. ( 2010;). An integrated machine learning approach for predicting DosR-regulated genes in Mycobacterium tuberculosis. BMC Syst Biol 4: 37 [CrossRef] [PubMed].
-
Zhou X., Lou Z., Fu S., Yang A., Shen H., Li Z., Feng Y., Bartlam M., Wang H., Rao Z.. ( 2010;). Crystal structure of ArgP from Mycobacterium tuberculosis confirms two distinct conformations of full-length LysR transcriptional regulators and reveals its function in DNA binding and transcriptional regulation. J Mol Biol 396: 1012––1024 [CrossRef] [PubMed].

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/micro/10.1099/mic.0.000257dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/micro AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/micro/10.1099/mic.0.000257dcterms_title,dcterms_subject-pub_serialIdent:journal/micro AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....