1887

Abstract

Trehalose is an important disaccharide that can be found in bacteria, fungi, invertebrates and plants. In some Ascomycota fungal plant pathogens, the role of trehalose was recently studied and shown to be important for conferring protection against several environmental stresses and for virulence. In most of the fungi studied, two enzymes are involved in the synthesis of trehalose: trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2). To study the role of trehalose in virulence and stress response in the Basidiomycota maize pathogen Δ deletion mutants were constructed. These mutants did not produce trehalose as confirmed by HPLC analysis, showing that the single gene disruption impaired its biosynthesis. The mutants displayed increased sensitivity to oxidative, heat, acid, ionic and osmotic stresses as compared to the wild-type strains. Virulence of Δ mutants to maize plants was extremely reduced compared to wild-type strains, possibly due to reduced capability to deal with the hostile host environment. The phenotypic traits displayed by Δ strains were fully restored to wild-type levels when complemented with the endogenous gene, or a chimeric construct having the ORF. This report demonstrates the presence of a single biosynthetic pathway for trehalose, and its importance for virulence in this model Basidiomycota plant pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000287
2016-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/6/1009.html?itemId=/content/journal/micro/10.1099/mic.0.000287&mimeType=html&fmt=ahah

References

  1. Al-Bader N., Vanier G., Liu H., Gravelat F. N., Urb M., Hoareau C. M., Campoli P., Chabot J., Filler S. G., Sheppard D. C. 2010; Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun 78:3007–3018 [View Article]
    [Google Scholar]
  2. Argüelles J. C. 1994; Heat-shock response in a yeast tps1 mutant deficient in trehalose synthesis. FEBS Lett 350:266–270 [View Article][PubMed]
    [Google Scholar]
  3. Avonce N., Mendoza-Vargas A., Morett E., Iturriaga G. 2006; Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109 [View Article][PubMed]
    [Google Scholar]
  4. Balasubramanian V., Vashisht D., Cletus J., Sakthivel N. 2012; Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett 34:1983–1990 [View Article][PubMed]
    [Google Scholar]
  5. Banuett F., Herskowitz I. 1989; Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci U S A 86:5878–5882[PubMed] [CrossRef]
    [Google Scholar]
  6. Barrett K. J., Gold S. E., Kronstad J. W. 1993; Identification and complementation of a mutation to constitutive filamentous growth in Ustilago maydis . Mol Plant Microbe Interact 6:274–283 [View Article][PubMed]
    [Google Scholar]
  7. Botts M. R., Huang M., Borchardt R. K., Hull C. M. 2014; Developmental cell fate and virulence are linked to trehalose homeostasis in Cryptococcus neoformans . Eukaryot Cell 13:1158–1168 [View Article][PubMed]
    [Google Scholar]
  8. Boudreau B. A., Larson T. M., Brown D. W., Busman M., Roberts E. S., Kendra D. F., McQuade K. L. 2013; Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: role of trehalose-6-phosphate synthase. Fungal Genet Biol 57:1–10 [View Article][PubMed]
    [Google Scholar]
  9. Bougouffa S., Radovanovic A., Essack M., Bajic V. B. 2014; DEOP: a Database on Osmoprotectants and Associated Pathways. Database1–13
    [Google Scholar]
  10. Brefort T., Doehlemann G., Mendoza-Mendoza A., Reissmann S., Djamei A., Kahmann R. 2009; Ustilago maydis as a Pathogen. Annu Rev Phytopathol 47:423–445 [View Article][PubMed]
    [Google Scholar]
  11. Cao Y., Wang Y., Dai B., Wang B., Zhang H., Zhu Z., Xu Y., Cao Y., Jiang Y., Zhang G. 2008; Trehalose is an important mediator of Cap1p oxidative stress response in Candida albicans . Biol Pharm Bull 31:421–425 [View Article][PubMed]
    [Google Scholar]
  12. Cervantes-Chávez J. A., Ortiz-Castellanos L., Tejeda-Sartorius M., Gold S., Ruiz-Herrera J. 2010; Functional analysis of the pH responsive pathway Pal/Rim in the phytopathogenic basidiomycete Ustilago maydis . Fungal Genet Biol 47:446–457 [View Article][PubMed]
    [Google Scholar]
  13. Conlin L. K., Nelson H. C. 2007; The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor. Mol Cell Biol 27:1505–1515 [View Article][PubMed]
    [Google Scholar]
  14. Crowe J. H. 2007; Trehalose as a "chemical chaperone": fact and fantasy. Adv Exp Med Biol 594:143–158 [View Article][PubMed]
    [Google Scholar]
  15. da Costa Morato Nery D., da Silva C. G., Mariani D., Fernandes P. N., Pereira M. D., Panek A. D., Eleutherio E. C. 2008; The role of trehalose and its transporter in protection against reactive oxygen species. Biochim Biophys Acta 1780:1408–1411 [View Article][PubMed]
    [Google Scholar]
  16. Dandage R., Bandyopadhyay A., Jayaraj G. G., Saxena K., Dalal V., Das A., Chakraborty K. 2015; Classification of chemical chaperones based on their effect on protein folding landscapes. ACS Chem Biol 10:813–820 [View Article][PubMed]
    [Google Scholar]
  17. Davidson R. C., Blankenship J. R., Kraus P. R., de Jesus Berrios M., Hull C. M., D'Souza C., Wang P., Heitman J. 2002; A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148:2607–2615 [View Article][PubMed]
    [Google Scholar]
  18. Dean R., Van Kan J. A., Pretorius Z. A., Hammond-Kosack K. E., Di Pietro A., Spanu P. D., Rudd J. J., Dickman M., Kahmann R. et al. 2012; The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430 [View Article][PubMed]
    [Google Scholar]
  19. Djamei A., Kahmann R. 2012; Ustilago maydis: dissecting the molecular interface between pathogen and plant. PLoS Pathog 8:e1002955 [View Article][PubMed]
    [Google Scholar]
  20. Doehlemann G., Berndt P., Hahn M. 2006; Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea . Microbiology 152:2625–2634 [View Article][PubMed]
    [Google Scholar]
  21. Doehlemann G., van der Linde K., Assmann D., Schwammbach D., Hof A., Mohanty A., Jackson D., Kahmann R. 2009; Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5:e1000290 [View Article][PubMed]
    [Google Scholar]
  22. Ferreira J. C., Thevelein J. M., Hohmann S., Paschoalin V. M., Trugo L. C., Panek A. D. 1997; Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in the UDPG-dependent trehalose synthase-phosphatase complex. Biochim Biophys Acta 1335:40–50[PubMed] [CrossRef]
    [Google Scholar]
  23. Fillinger S., Chaveroche M. K., van Dijck P., de Vries R., Ruijter G., Thevelein J., d'Enfert C. 2001; Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans . Microbiology 147:1851–1862 [View Article][PubMed]
    [Google Scholar]
  24. Foster A. J., Jenkinson J. M., Talbot N. J. 2003; Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea . EMBO J 22:225–235 [View Article][PubMed]
    [Google Scholar]
  25. Gancedo C., Flores C. L. 2004; The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 4:351–359 [View Article][PubMed]
    [Google Scholar]
  26. García-Pedrajas M. D., Nadal M., Denny T., Baeza-Montañez L., Paz Z., Gold S. E. 2010; DelsGate: a robust and rapid method for gene deletion. Methods Mol Biol 638:55–76 [View Article][PubMed]
    [Google Scholar]
  27. Gounalaki N., Thireos G. 1994; Yap1p, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response. EMBO J 13:4036–4041[PubMed]
    [Google Scholar]
  28. Guo Z., Olsson L. 2014; Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate. FEMS Yeast Res 14:1234–1248 [View Article][PubMed]
    [Google Scholar]
  29. Gónzalez-Párraga P., Alonso-Monge R., Plá J., Argüelles J. C. 2010; Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways. FEMS Yeast Res 10:747–756 [View Article][PubMed]
    [Google Scholar]
  30. Hemetsberger C., Herrberger C., Zechmann B., Hillmer M., Doehlemann G. 2012; The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 8:e1002684 [View Article][PubMed]
    [Google Scholar]
  31. Hoffman C. S., Winston F. 1987; A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli . Gene 57:267–272 [View Article][PubMed]
    [Google Scholar]
  32. Holliday R. 1961; The genetics of Ustilago maydis . Genet Res 2:204–230 [CrossRef]
    [Google Scholar]
  33. Hu J., Wei M., Mirzaei H., Madia F., Mirisola M., Amparo C., Chagoury S., Kennedy B., Longo V. D. 2014; Tor-Sch9 deficiency activates catabolism of the ketone body-like acetic acid to promote trehalose accumulation and longevity. Aging Cell 13:457–467 [View Article][PubMed]
    [Google Scholar]
  34. Iordachescu M., Imai R. 2008; Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50:1223–1229 [View Article][PubMed]
    [Google Scholar]
  35. Kaushik J. K., Bhat R. 2003; Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem 278:26458–26465 [View Article][PubMed]
    [Google Scholar]
  36. Kim I. S., Sohn H. Y., Jin I. 2011; Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377. J Microbiol 49:816–823 [View Article][PubMed]
    [Google Scholar]
  37. Kuranda K., Leberre V., Sokol S., Palamarczyk G., François J. 2006; Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol Microbiol 61:1147–1166 [View Article][PubMed]
    [Google Scholar]
  38. Kämper J., Kahmann R., Bölker M., Ma L. J., Brefort T., Saville B. J., Banuett F., Kronstad J. W., Gold S. E. et al. 2006; Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis . Nature 444:97–101 [View Article][PubMed]
    [Google Scholar]
  39. Lahiri S., Banerjee S., Dutta T., Sengupta S., Dey S., Roy S., Sengupta D., Chattopadhyay K., Ghosh A. K. 2014; Enzymatic and regulatory attributes of trehalose-6-phosphate pohosphatase from Candida utilis and its role during thermal stress. J Cell Physiol 222:1245–1255 [CrossRef]
    [Google Scholar]
  40. Li L., Ye Y., Pan L., Zhu Y., Zheng S., Lin Y. 2009; The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses. Biochem Biophys Res Commun 387:778–783 [View Article][PubMed]
    [Google Scholar]
  41. Lowe R. G., Lord M., Rybak K., Trengove R. D., Oliver R. P., Solomon P. S. 2009; Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum . Fungal Genet Biol 46:381–389 [View Article][PubMed]
    [Google Scholar]
  42. Lu H., Zhu Z., Dong L., Jia X., Sun X., Yan L., Chai Y., Jiang Y., Cao Y. 2011; Lack of trehalose accelerates H2O2-induced Candida albicans apoptosis through regulating Ca2+ signaling pathway and caspase activity. PLoS One 6:e15808 [View Article][PubMed]
    [Google Scholar]
  43. Mahmud S. A., Hirasawa T., Shimizu H. 2010; Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J Biosci Bioeng 109:262–266 [View Article][PubMed]
    [Google Scholar]
  44. Mahmud S. A., Hirasawa T., Furusawa C., Yoshikawa K., Shimizu H. 2012; Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. J Biosci Bioeng 113:526–528 [View Article][PubMed]
    [Google Scholar]
  45. Mayer F. L., Wilson D., Jacobsen I. D., Miramón P., Slesiona S., Bohovych I. M., Brown A. J., Hube B. 2012; Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans . PLoS One 7:e38584 [View Article][PubMed]
    [Google Scholar]
  46. Mensonides F. I., Brul S., Klis F. M., Hellingwerf K. J., Teixeira de Mattos M. J. 2005; Activation of the protein kinase C1 pathway upon continuous heat stress in Saccharomyces cerevisiae is triggered by an intracellular increase in osmolarity due to trehalose accumulation. Appl Environ Microbiol 71:4531–4538 [View Article][PubMed]
    [Google Scholar]
  47. Molina L., Kahmann R. 2007; An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:2293–2309 [View Article][PubMed]
    [Google Scholar]
  48. Ngamskulrungroj P., Himmelreich U., Breger J. A., Wilson C., Chayakulkeeree M., Krockenberger M. B., Malik R., Daniel H. M., Toffaletti D. 2009; The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii . Infect Immun 77:4584–4596 [View Article][PubMed]
    [Google Scholar]
  49. Ni M., Yu J. H. 2007; A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans . PLoS One 2:e970 [View Article][PubMed]
    [Google Scholar]
  50. Nikolaou E., Agrafioti I., Stumpf M., Quinn J., Stansfield I., Brown A. J. 2009; Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 21:44 [CrossRef]
    [Google Scholar]
  51. O'Brien J. A., Daudi A., Butt V. S., Bolwell G. P. 2012; Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–779 [View Article][PubMed]
    [Google Scholar]
  52. Palabiyik B., Jafari Ghods F. 2015; Role of oxidative stress response and trehalose accumulation in the longevity of fission yeast. Jundishapur J Microbiol 8:e16851 [View Article][PubMed]
    [Google Scholar]
  53. Paul M. J. 2008; Trehalose 6-phosphate: a signal of sucrose status. Biochem J 412:e12 [View Article][PubMed]
    [Google Scholar]
  54. Petzold E. W., Himmelreich U., Mylonakis E., Rude T., Toffaletti D., Cox G. M., Miller J. L., Perfect J. R. 2006; Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans . Infect Immun 74:5877–5887 [View Article][PubMed]
    [Google Scholar]
  55. Puttikamonkul S., Willger S. D., Grahl N., Perfect J. R., Movahed N., Bothner B., Park S., Paderu P., Perlin D. S. et al. 2010; Trehalose 6-phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen Aspergillus fumigatus . Mol Microbiol 77:891–911 [View Article][PubMed]
    [Google Scholar]
  56. Ram A. F., Klis F. M. 2006; Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat Protoc 1:2253–2256 [View Article][PubMed]
    [Google Scholar]
  57. Saleh A. A., Gune U. S., Chaudhary R. K., Turakhiya A. P., Roy I. 2014; Roles of Hsp104 and trehalose in solubilisation of mutant huntingtin in heat shocked Saccharomyces cerevisiae cells. Biochim Biophys Acta 1843:746–757 [View Article][PubMed]
    [Google Scholar]
  58. Salmerón-Santiago K. G., Pardo J. P., Flores-Herrera O., Mendoza-Hernández G., Miranda-Arango M., Guerra-Sánchez G. 2011; Response to osmotic stress and temperature of the fungus Ustilago maydis . Arch Microbiol 193:701–709 [View Article][PubMed]
    [Google Scholar]
  59. Sambrook J., Russell D. W. 1999 Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  60. Song X. S., Li H. P., Zhang J. B., Song B., Huang T., Du X. M., Gong A. D., Liu Y. K., Feng Y. N. et al. 2014; Trehalose 6-phosphate phosphatase is required for development, virulence and mycotoxin biosynthesis apart from trehalose biosynthesis in Fusarium graminearum . Fungal Genetics and Biology 63:24–41 [View Article][PubMed]
    [Google Scholar]
  61. Svanström Å., van Leeuwen M. R., Dijksterhuis J., Melin P. 2014; Trehalose synthesis in Aspergillus niger: characterization of six homologous genes, all with conserved orthologs in related species. BMC Microbiol 14:90 [View Article][PubMed]
    [Google Scholar]
  62. Sánchez-Fresneda R., Guirao-Abad J. P., Argüelles A., González-Párraga P., Valentín E., Argüelles J. C. 2013; Specific stress-induced storage of trehalose, glycerol and D-arabitol in response to oxidative and osmotic stress in Candida albicans . Biochem Biophys Res Commun 430:1334–1339 [View Article][PubMed]
    [Google Scholar]
  63. Tournu H., Fiori A., Van Dijck P. 2013; Relevance of trehalose in pathogenicity: some general rules, yet many exceptions. PLoS Pathog 9:e1003447 [View Article][PubMed]
    [Google Scholar]
  64. Van Dijck P., De Rop L., Szlufcik K., Van Ael E., Thevelein J. M. 2002; Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation. Infect Immun 70:1772–1782[PubMed] [CrossRef]
    [Google Scholar]
  65. Vilaça R., Mendes V., Mendes M. V., Carreto L., Amorim M. A., de Freitas V., Moradas-Ferreira P., Mateus N., Costa V. 2012; Quercetin protects Saccharomyces cerevisiae against oxidative stress by inducing trehalose biosynthesis and the cell wall integrity pathway. PLoS One 7:e45494 [View Article][PubMed]
    [Google Scholar]
  66. Wilson R. A., Jenkinson J. M., Gibson R. P., Littlechild J. A., Wang Z. Y., Talbot N. J. 2007; Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685 [View Article][PubMed]
    [Google Scholar]
  67. Winderickx J., de Winde J. H., Crauwels M., Hino A., Hohmann S., Van Dijck P., Thevelein J. M. 1996; Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control?. Mol Gen Genet 252:470–482[PubMed]
    [Google Scholar]
  68. Yoshiyama Y., Tanaka K., Yoshiyama K., Hibi M., Ogawa J., Shima J. 2015; Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid. J Biosci Bioeng 119:172–175 [View Article][PubMed]
    [Google Scholar]
  69. Zaragoza O., de Virgilio C., Pontón J., Gancedo C. 2002; Disruption in Candida albicans of the TPS2 gene encoding trehalose-6-phosphate phosphatase affects cell integrity and decreases infectivity. Microbiology 148:1281–1290 [View Article][PubMed]
    [Google Scholar]
  70. Zhang C., Wang J., Tao H., Dang X., Wang Y., Chen M., Zhai Z., Yu W., Xu L. et al. 2015; FvBck1, a component of cell wall integrity MAP kinase pathway, is required for virulence and oxidative stress response in sugarcane Pokkah Boeng pathogen. Front Microbiol 6:1096 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000287
Loading
/content/journal/micro/10.1099/mic.0.000287
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error