
f Mechanisms of extracellular S0 globule production and degradation in Chlorobaculum tepidum via dynamic cell–globule interactions
- Authors: C. L. Marnocha1,2 , A. T. Levy2,3 , D. H. Powell2 , T. E. Hanson2,4,5 , C. S. Chan1,2,4
-
- VIEW AFFILIATIONS
-
1 1Department of Geological Sciences, University of Delaware, Newark, DE 19716, USA 2 2Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA 3 3Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA 4 4School of Marine Science and Policy, University of Delaware, Newark, DE 19716, USA 5 5Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence C. S. Chan [email protected]
- First Published Online: 01 July 2016, Microbiology 162: 1125-1134, doi: 10.1099/mic.0.000294
- Subject: Environmental Biology
- Received:
- Accepted:
- Cover date:




Mechanisms of extracellular S0 globule production and degradation in Chlorobaculum tepidum via dynamic cell–globule interactions, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/micro/162/7/1125_mic.0.000294-1.gif
-
The Chlorobiales are anoxygenic phototrophs that produce solid, extracellular elemental sulfur globules as an intermediate step in the oxidation of sulfide to sulfate. These organisms must export sulfur while preventing cell encrustation during S0 globule formation; during globule degradation they must find and mobilize the sulfur for intracellular oxidation to sulfate. To understand how the Chlorobiales address these challenges, we characterized the spatial relationships and physical dynamics of Chlorobaculum tepidum cells and S0 globules by light and electron microscopy. Cba. tepidum commonly formed globules at a distance from cells. Soluble polysulfides detected during globule production may allow for remote nucleation of globules. Polysulfides were also detected during globule degradation, probably produced as an intermediate of sulfur oxidation by attached cells. Polysulfides could feed unattached cells, which made up over 80% of the population and had comparable growth rates to attached cells. Given that S0 is formed remotely from cells, there is a question as to how cells are able to move toward S0 in order to attach. Time-lapse microscopy shows that Cba. tepidum is in fact capable of twitching motility, a finding supported by the presence of genes encoding type IV pili. Our results show how Cba. tepidum is able to avoid mineral encrustation and benefit from globule degradation even when not attached. In the environment, Cba. tepidum may also benefit from soluble sulfur species produced by other sulfur-oxidizing or sulfur-reducing bacteria as these organisms interact with its biogenic S0 globules.
-
Edited by: C. Dahl
-
Four supplementary videos and four supplementary figures are available with the online Supplementary Material.
- Keyword(s): microbe–mineral interactions, time-lapse, microscopy, elemental sulfur, green sulfur bacteria, motility
-
Abbreviations: cryoSEM cryo-scanning electron microscopy GSB green sulfur bacteria SOB sulfur-oxidizing bacterium
© 2016 The Authors
-
Beliaev A. S., Saffarini D. A..( 1998;). Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. . J Bacteriol 180: 6292––6297.[PubMed]
-
Berry J. L., Pelicic V..( 2015;). Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. . FEMS Microbiol Rev 39: fuu001. [CrossRef] [PubMed]
-
Brocher J..( 2015;). The BioVoxxel image processing and analysis toolbox. . In European BioImage Analysis Symposium. Paris, France.
-
Brune D. C..( 1995;). Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. . Arch Microbiol 163: 391––399.[PubMed] [CrossRef]
-
Bryant D. A., Frigaard N. U..( 2006;). Prokaryotic photosynthesis and phototrophy illuminated. . Trends Microbiol 14: 488––496. [CrossRef] [PubMed]
-
Burrows L. L..( 2012;). Pseudomonas aeruginosa twitching motility: type IV pili in action. . Annu Rev Microbiol 66: 493––520. [CrossRef] [PubMed]
-
Chan L.-K., Morgan-Kiss R., Hanson T. E..( 2008a;). Genetic and proteomic studies of sulfur oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum). . In Sulfur Metabolism in Phototrophic Organisms, pp. 357––373. Springer;.[CrossRef]
-
Chan L.-K., Morgan-Kiss R., Hanson T. E..( 2008b;). Sulfur oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum): genetic and proteomic analyses. . In Microbial Sulfur Metabolism, pp. 117––126. Edited by Dahl C., Friedrich C. G.. Berlin/Heidelberg:: Springer;.[CrossRef]
-
Chan L.-K., Weber T. S., Morgan-Kiss R. M., Hanson T. E..( 2008c;). A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium Chlorobium tepidum (syn. Chlorobaculum tepidum). . Microbiology 154: 818––829. [CrossRef]
-
Chan C. S., Fakra S. C., Emerson D., Fleming E. J., Edwards K. J..( 2011;). Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. . ISME J 5: 717––727. [CrossRef] [PubMed]
-
Chaudhuri R. G., Paria S..( 2010;). Synthesis of sulfur nanoparticles in aqueous surfactant solutions. . J Colloid Interface Sci 343: 439––446. [CrossRef] [PubMed]
-
Dahl C., Prange A..( 2006;). Bacterial sulfur globules: occurrence, structure and metabolism. . In Inclusions in Prokaryotes , pp. 21––51. Edited by Shively J. M.. Berlin/Heidelberg:: Springer;.[CrossRef]
-
Eckert B., Okazaki R., Steudel R., Takeda N., Tokitoh N., Wong M..( 2003;). Elemental sulfur and sulfur-rich compounds II. . Top Curr Chem 231: 32––98.
-
Franz B., Lichtenberg H., Hormes J., Modrow H., Dahl C., Prange A..( 2007;). Utilization of solid ‘elemental’ sulfur by the phototrophic purple sulfur bacterium Allochromatium vinosum: a sulfur K-edge X-ray absorption spectroscopy study. . Microbiology 153: 1268––1274. [CrossRef] [PubMed]
-
Franz B., Gehrke T., Lichtenberg H., Hormes J., Dahl C., Prange A..( 2009;). Unexpected extracellular and intracellular sulfur species during growth of Allochromatium vinosum with reduced sulfur compounds. . Microbiology 155: 2766––2774. [CrossRef] [PubMed]
-
Friedrich C. G., Rother D., Bardischewsky F., Quentmeier A., Fischer J..( 2001;). Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?. Appl Environ Microbiol 67: 2873––2882. [CrossRef] [PubMed]
-
Frigaard N.-U., Dahl C..( 2008;). Sulfur metabolism in phototrophic sulfur bacteria. . Adv Microb Physiol 54: 103––200.[CrossRef]
-
Fuller S. J., McMillan D. G., Renz M. B., Schmidt M., Burke I. T., Stewart D. I..( 2014;). Extracellular electron transport-mediated Fe(III) reduction by a community of alkaliphilic bacteria that use flavins as electron shuttles. . Appl Environ Microbiol 80: 128––137. [CrossRef] [PubMed]
-
Garcia A. A., Druschel G. K..( 2014;). Elemental sulfur coarsening kinetics. . Geochem Trans 15:. [CrossRef] [PubMed]
-
George G. N., Gnida M., Bazylinski D. A., Prince R. C., Pickering I. J..( 2008;). X-ray absorption spectroscopy as a probe of microbial sulfur biochemistry: the nature of bacterial sulfur globules revisited. . J Bacteriol 190: 6376––6383. [CrossRef] [PubMed]
-
Gilbert B., Zhang H., Huang F., Finnegan M. P., Waychunas G. A., Banfield J. F..( 2003;). Special phase transformation and crystal growth pathways observed in nanoparticles. . Geochem Trans 4: 20––27.[CrossRef]
-
Gralnick J. A., Newman D. K..( 2007;). Extracellular respiration. . Mol Microbiol 65: 1––11. [CrossRef] [PubMed]
-
Gregersen L. H., Bryant D. A., Frigaard N. U..( 2011;). Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. . Front Microbiol 2:. [CrossRef] [PubMed]
-
Hanson T. E., Bonsu E., Tuerk A., Marnocha C. L., Powell D. H., Chan C. S..( 2015;). Chlorobaculum tepidum growth on biogenic S0 as the sole photosynthetic electron donor. . Environ Microbiol. [CrossRef] [PubMed]
-
Hegler F., Schmidt C., Schwarz H., Kappler A..( 2010;). Does a low-pH microenvironment around phototrophic Fe(II)-oxidizing bacteria prevent cell encrustation by Fe(III) minerals?. FEMS Microbiol Ecol 74: 592––600. [CrossRef] [PubMed]
-
Holkenbrink C., Barbas S. O., Mellerup A., Otaki H., Frigaard N. U..( 2011;). Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system. . Microbiology 157: 1229––1239. [CrossRef] [PubMed]
-
Kachlany S. C., Planet P. J., Desalle R., Fine D. H., Figurski D. H., Kaplan J. B..( 2001;). flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans. . Mol Microbiol 40: 542––554. [CrossRef] [PubMed]
-
Kleinjan W. E., de Keizer A., Janssen A. J..( 2003;). Biologically produced sulfur. . In Elemental Sulfur and Sulfur-Rich Compounds I , pp. 167––188. Edited by Steudel R.. Berlin/Heidelberg:: Springer Verlag;.[CrossRef]
-
Lloyd J. R..( 2003;). Microbial reduction of metals and radionuclides. . FEMS Microbiol Rev 27: 411––425.[PubMed] [CrossRef]
-
Lloyd J. R., Blunt-Harris E. L., Lovley D. R..( 1999;). The periplasmic 9.6-kilodalton c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III). . J Bacteriol 181: 7647––7649.[PubMed]
-
Lovley D. R., Coates J. D., Blunt-Harris E. L., Phillips E. J. P., Woodward J. C..( 1996;). Humic substances as electron acceptors for microbial respiration. . Nature 382: 445––448. [CrossRef]
-
Maier B., Wong G. C..( 2015;). How bacteria use type IV pili machinery on surfaces. . Trends Microbiol 23: 775––788. [CrossRef] [PubMed]
-
Mangold S., Valdés J., Holmes D. S., Dopson M..( 2011;). Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. . Front Microbiol 2:. [CrossRef] [PubMed]
-
Marsili E., Baron D. B., Shikhare I. D., Coursolle D., Gralnick J. A., Bond D. R..( 2008;). Shewanella secretes flavins that mediate extracellular electron transfer. . Proc Natl Acad Sci U S A 105: 3968––3973. [CrossRef] [PubMed]
-
Morgan-Kiss R. M., Chan L. K., Modla S., Weber T. S., Warner M., Czymmek K. J., Hanson T. E..( 2009;). Chlorobaculum tepidum regulates chlorosome structure and function in response to temperature and electron donor availability. . Photosynth Res 99: 11––21. [CrossRef] [PubMed]
-
Myers C. R., Myers J. M..( 1992;). Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. . J Bacteriol 174: 3429––3438.[PubMed] [CrossRef]
-
Overmann J., Garcia-Pichel F..( 2013;). The phototrophic way of life. . In The Prokaryotes, pp. 203––257. Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F.. Berlin/Heidelberg:: Springer;.[CrossRef]
-
Pibernat I. V., Abella C. A..( 1996;). Sulfide pulsing as the controlling factor of spinae production in Chlorobium limicola strain UdG 6038. . Arch Microbiol 165: 272––278.[PubMed] [CrossRef]
-
Pickering I. J., George G. N., Yu E. Y., Brune D. C., Tuschak C., Overmann J., Beatty J. T., Prince R. C..( 2001;). Analysis of sulfur biochemistry of sulfur bacteria using X-ray absorption spectroscopy. . Biochemistry 40: 8138––8145. [CrossRef] [PubMed]
-
Prange A., Chauvistré R., Modrow H., Hormes J., Trüper H. G., Dahl C..( 2002;). Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur. . Microbiology 148: 267––276. [CrossRef] [PubMed]
-
Rethmeier J., Rabenstein A., Langer M., Fischer U..( 1997;). Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods. . J Chromatogr A 760: 295––302. [CrossRef]
-
Saini G., Chan C. S..( 2013;). Near-neutral surface charge and hydrophilicity prevent mineral encrustation of Fe-oxidizing micro-organisms. . Geobiology 11: 191––200. [CrossRef] [PubMed]
-
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S. et al.( 2012;). Fiji: an open-source platform for biological-image analysis. . Nat Methods 9: 676––682. [CrossRef] [PubMed]
-
Shi L., Richardson D. J., Wang Z., Kerisit S. N., Rosso K. M., Zachara J. M., Fredrickson J. K..( 2009;). The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. . Environ Microbiol Rep 1: 220––227. [CrossRef] [PubMed]
-
Steudel R..( 1996;). Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. . Ind Eng Chem Res 35: 1417––1423. [CrossRef]
-
Steudel R..( 2003;). Aqueous sulfur sols. . In Elemental Sulfur and Sulfur-Rich Compounds I, pp. 153––166. Edited by Steudel R.. Berlin/Heidelberg:: Springer Verlag;.[CrossRef]
-
Steudel R., Göbel T., Holdt G..( 1988;). The molecular composition of hydrophilic sulfur sols prepared by acid decomposition of thiosulfate. . Z Naturforsch C 43: 203––218. [CrossRef]
-
Then J., Trüper H. G..( 1984;). Utilization of sulfide and elemental sulfur by Ectothiorhodospira halochloris. . Arch Microbiol 139: 295––298. [CrossRef]
-
Truper H. G., Fischer U..( 1982;). Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. . Philos Trans R Soc Lond B Biol Sci 298: 529––542. [CrossRef]
-
Trüper H. G., Genovese S..( 1968;). Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). . Limnol Oceanogr 13: 225––232. [CrossRef]
-
Van Gemerden H..( 1984;). The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. . Arch Microbiol 139: 289––294. [CrossRef]
-
van Gemerden H..( 1986;). Production of elemental sulfur by green and purple sulfur bacteria. . Arch Microbiol 146: 52––56. [CrossRef]
-
Visscher P. T., van Gemerden H..( 1988;). Growth of Chlorobium limicola f. thiosulfatophilum on polysulfides. . In Green Photosynthetic Bacteria, pp. 287––294. Edited by Olson J. M., Ormerod J. G., Amesz J., Stackebrandt E., Trüper H. G.. Springer;.[CrossRef]
-
Wahlund T. M., Woese C. R., Castenholz R. W., Madigan M. T..( 1991;). A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. . Arch Microbiol 156: 81––90. [CrossRef]
-
Warthmann R., Cypionka H., Pfennig N..( 1992;). Photoproduction of H2 from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria. . Arch Microbiol 157: 343––348. [CrossRef]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/micro/10.1099/mic.0.000294dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/micro AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/micro/10.1099/mic.0.000294dcterms_title,dcterms_subject-pub_serialIdent:journal/micro AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....