1887

Abstract

The antimicrobial power of honey seems to be ascribable to several factors, including oxidative and osmotic stress. The aim of this study was to find genetic determinants involved in the response to honey stress in the opportunistic pathogen , chosen as model micro-organism. A library of transposon mutants of PAO1 was constructed and only four mutants unable to grow in presence of fir honeydew honey were selected. All four mutants were impaired in the major HO-scavenging enzyme catalase A (KatA). The knockout of gene caused sensitivity, as expected, not only to hydrogen peroxide but also to different types of honey including Manuka GMO 220 honey. Genetic complementation, as well as the addition of PAO1 supernatant containing extracellular catalase, restored tolerance to honey stress in all the mutants. As PAO1 catalase KatA copes with HO stress, it is conceivable that the antimicrobial activity of honey is, at least partially, due to the presence of hydrogen peroxide in honey or the ability of honey to induce production of hydrogen peroxide. The deficient mutants could be used as tester micro-organisms to compare the power of different types of natural and curative honeys in eliciting oxidative stress mediated by hydrogen peroxide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000351
2016-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1554.html?itemId=/content/journal/micro/10.1099/mic.0.000351&mimeType=html&fmt=ahah

References

  1. Astwood K., Lee B., Manley-Harris M. 1998; Oligosaccharides in New Zeland honeydew honey. J Agric Food Chem 46:4958–4962 [View Article]
    [Google Scholar]
  2. Blair S. E., Cokcetin N. N., Harry E. J., Carter D. A. 2009; The unusual antibacterial activity of medical-grade Leptospermum honey: antibacterial spectrum, resistance and transcriptome analysis. Eur J Clin Microbiol Infect Dis 28:1199–1208 [View Article][PubMed]
    [Google Scholar]
  3. Blatny J. M., Brautaset T., Winther-Larsen H. C., Haugan K., Valla S. 1997; Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63:370–379[PubMed]
    [Google Scholar]
  4. Bobis O., Marghitas L., Rindt I. K., Niculae M., Dezmirean D. 2008; Honeydew honey: correlations between chemical composition, antioxidant capacity and antibacterial effect. Zootehnie Biotehnologii 41:271–277
    [Google Scholar]
  5. Bogdanov S. 1997; Nature and origin of the antibacterial substances in honey. LWT - Food Sci Technol 30:748–753 [View Article]
    [Google Scholar]
  6. Bogdanov S., Jurendic T., Sieber R., Gallmann P. 2008; Honey for nutrition and health: a review. J Am Coll Nutr 27:677–689 [View Article][PubMed]
    [Google Scholar]
  7. Brown S. M., Howell M. L., Vasil M. L., Anderson A. J., Hassett D. J. 1995; Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide. J Bacteriol 177:6536–6544[PubMed]
    [Google Scholar]
  8. Brudzynski K., Lannigan R. 2012; Mechanism of honey bacteriostatic action against MRSA and VRE involves hydroxyl radicals generated from honey’s hydrogen peroxide. Front Microbiol 3:1–8 [View Article]
    [Google Scholar]
  9. Brudzynski K., Miotto D. 2011; Honey melanoidins: analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem 127:1023–1030 [View Article][PubMed]
    [Google Scholar]
  10. Brudzynski K., Sjaarda C. 2015; Honey glycoproteins containing antimicrobial peptides, Jelleins of the Major Royal Jelly Protein 1, are responsible for the cell wall lytic and bactericidal activities of honey. PLoS One 10:e0120238 [View Article][PubMed]
    [Google Scholar]
  11. Bucekova M., Valachova I., Kohutova L., Prochazka E., Klaudiny J., Majtan J. 2014; Honeybee glucose oxidase – its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys. Naturwissenschaften 101:661–670 [View Article][PubMed]
    [Google Scholar]
  12. Carter D. A., Blair S. E., Cokcetin N. N., Bouzo D., Brooks P., Schothauer R., Harry E. J. 2016; Therapeutic manuka honey: no longer so alternative. Front Microbiol 7:569
    [Google Scholar]
  13. Choi K. H., Kumar A., Schweizer H. P. 2006; A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397 [View Article][PubMed]
    [Google Scholar]
  14. Choi Y. S., Shin D. H., Chung I. Y., Kim S. H., Heo Y. J., Cho Y. H. 2007; Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. J Microbiol Biotechnol 17:1344–1352[PubMed]
    [Google Scholar]
  15. Codex Alimentarius Commission (FAO/WHO) 2001 Revised codex standard for honey (CODEX STAN 12-1981, Rev.1 (1987), Rev.2 (2001)) Codex Alimentarius
  16. Fidaleo M., Zuorro A., Lavecchia R. 2011; Antimicrobial activity of some Italian honeys against pathogenic bacteria. Chem Eng Transaction 24:1015–1020
    [Google Scholar]
  17. Gellatly S. L., Hancock R. E. 2013; Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173 [View Article][PubMed]
    [Google Scholar]
  18. Hassett D. J., Alsabbagh E., Parvatiyar K., Howell M. L., Wilmott R. W., Ochsner U. A. 2000; A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities. J Bacteriol 182:4557–4563 [View Article][PubMed]
    [Google Scholar]
  19. Hayashi K., Fukushima A., Hayashi-Nishino M., Nishino K. 2014; Effect of methylglyoxal on multidrug-resistant Pseudomonas aeruginosa. Front Microbiol 5:180 [View Article]
    [Google Scholar]
  20. Herrero M., de Lorenzo V., Timmis K. N. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567[PubMed]
    [Google Scholar]
  21. Huang L., St Denis T. G., Xuan Y., Huang Y. Y., Tanaka M., Zadlo A., Sarna T., Hamblin M. R. 2012; Paradoxical potentiation of methylene blue-mediated antimicrobial photodynamic inactivation by sodium azide: role of ambient oxygen and azide radicals. Free Radic Biol Med 53:2062–2071 [View Article][PubMed]
    [Google Scholar]
  22. Ishikawa S., Suzuki K., Fukuda E., Arihara K., Yamamoto Y., Mukai T., Itoh M. 2010; Photodynamic antimicrobial activity of avian eggshell pigments. FEBS Lett 584:770–774 [View Article][PubMed]
    [Google Scholar]
  23. Jenkins R., Burton N., Cooper R. 2014; Proteomic and genomic analysis of methicillin-resistant Staphylococcus aureus (MRSA) exposed to manuka honey in vitro demonstrated down-regulation of virulence markers. J Antimicrob Chemother 69:603–615 [View Article][PubMed]
    [Google Scholar]
  24. Kacaniova M., Vukovic N., Bobkova A., Fikselova M., Rovna K., Hascik P., Cubon J., Hleba L., Bobko M. 2011; Antimicrobial and antiradical activity of Slovakian honeydew honey samples. J Microbiol Biotech Food Sci 3:354–368
    [Google Scholar]
  25. Kulasekara H. D., Ventre I., Kulasekara B. R., Lazdunski A., Filloux A., Lory S. 2005; A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55:368–380 [View Article][PubMed]
    [Google Scholar]
  26. Kwakman P. H., te Velde A. A., de Boer L., Speijer D., Vandenbroucke-Grauls C. M., Zaat S. A. 2010; How honey kills bacteria. FASEB J 24:2576–2582 [View Article][PubMed]
    [Google Scholar]
  27. Lambert P. A. 2002; Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 41:22–26
    [Google Scholar]
  28. Lee J. S., Heo Y. J., Lee J. K., Cho Y. H. 2005; KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect Immun 73:4399–4403 [View Article][PubMed]
    [Google Scholar]
  29. Majtan J., Majtanova L., Bohova J., Majtan V. 2011; Honeydew honey as a potent antibacterial agent in eradication of multi-drug resistant Stenotrophomonas maltophilia isolates from cancer patients. Phytother Res 25:584–587 [View Article][PubMed]
    [Google Scholar]
  30. Mavric E., Wittmann S., Barth G., Henle T. 2008; Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res 52:483–489 [View Article][PubMed]
    [Google Scholar]
  31. O'Toole G. A., Kolter R. 1998; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461 [View Article][PubMed]
    [Google Scholar]
  32. Ochsner U. A., Vasil M. L., Alsabbagh E., Parvatiyar K., Hassett D. J. 2000; Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol 182:4533–4544 [View Article][PubMed]
    [Google Scholar]
  33. Packer J. M., Irish J., Herbert B. R., Hill C., Padula M., Blair S. E., Carter D. A., Harry E. J. 2012; Specific non-peroxide antibacterial effect of manuka honey on the Staphylococcus aureus proteome. Int J Antimicrob Agents 40:43–50 [View Article][PubMed]
    [Google Scholar]
  34. Roberts A. E., Brown H. L., Jenkins R. E. 2015; On the antibacterial effects of Manuka honey: mechanistic insights. Res Rep Biol 6:215–224
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Shin D. H., Choi Y. S., Cho Y. H. 2008; Unusual properties of catalase A (KatA) of Pseudomonas aeruginosa PA14 are associated with its biofilm peroxide resistance. J Bacteriol 190:2663–2670 [View Article][PubMed]
    [Google Scholar]
  37. Sojka M., Valachova I., Bucekova M., Majtan J. 2016; Antibiofilm efficacy of honey and bee-derived defensin-1 on multispecies wound biofilm. J Med Microbiol 65:337–344 [View Article]
    [Google Scholar]
  38. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. et al. 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [View Article][PubMed]
    [Google Scholar]
  39. Tavares A., Dias S. R., Carvalho C. M., Faustino M. A., Tomé J. P., Neves M. G., Tomé A. C., Cavaleiro J. A., Cunha Â. et al. 2011; Mechanisms of photodynamic inactivation of a gram-negative recombinant bioluminescent bacterium by cationic porphyrins. Photochem Photobiol Sci 10:1659–1669 [View Article][PubMed]
    [Google Scholar]
  40. Uthurry C. A., Hevia D., Gomez-Cordoves C. 2011; Role of honey polyphenols in health. JAAS 3:141–159 [View Article]
    [Google Scholar]
  41. Vatansever F., de Melo W. C., Avci P., Vecchio D., Sadasivam M., Gupta A., Chandran R., Karimi M., Parizotto N. A. et al. 2013; Antimicrobial strategies centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 37:955–989 [View Article][PubMed]
    [Google Scholar]
  42. White J. W., Subers M. H., Schepartz A. I. 1963; The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim Biophys Acta 73:57–70 [View Article][PubMed]
    [Google Scholar]
  43. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000351
Loading
/content/journal/micro/10.1099/mic.0.000351
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error