
- « Previous Article
- Table of Contents
- Next Article »
f Loop structures in the 5′ untranslated region and antisense RNA mediate pilE gene expression in Neisseria gonorrhoeae
- Authors: Thao L. Masters1 , Jenny Wachter1 , Stuart A. Hill1
-
- VIEW AFFILIATIONS
-
1 Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
- Correspondence Stuart A. Hill [email protected]
- First Published Online: 23 November 2016, Microbiology 162: 2005-2016, doi: 10.1099/mic.0.000369
- Subject: Regulation
- Received:
- Accepted:
- Cover date:




Loop structures in the 5′ untranslated region and antisense RNA mediate pilE gene expression in Neisseria gonorrhoeae, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/micro/162/11/2005_micro000369-1.gif
-
Regulation of the Neisseria gonorrhoeae pilE gene is ill-defined. In this study, post-transcriptional effects on expression were assessed. In silico analysis predicts the formation of three putative stable stem–loop structures with favourable free energies within the 5′ untranslated region of the pilE message. Using quantitative reverse transcriptase PCR analyses, we show that each loop structure forms, with introduced destabilizing stem–loop mutations diminishing loop stability. Utilizing a series of pilE translational fusions, deletion of either loop 1 or loop 2 caused a significant reduction of pilE mRNA resulting in reduced expression of the reporter gene. Consequently, the formation of the loops apparently protects the pilE transcript from degradation. Putative loop 3 contains the pilE ribosomal binding site. Consequently, its formation may influence translation. Analysis of a small RNA transcriptome revealed an antisense RNA being produced upstream of the pilE promoter that is predicted to hybridize across the 5′ untranslated region loops. Insertional mutants were created where the antisense RNA is not transcribed. In these mutants, pilE transcript levels are greatly diminished, with any residual message apparently not being translated. Complementation of these insertion mutants in trans with the antisense RNA gene facilitates pilE translation yielding a pilus + phenotype. Overall, this study demonstrates a complex relationship between loop-dependent transcript protection and antisense RNA in modulating pilE expression levels.
-
Edited by: P. W. O'Toole
-
Edited by: D. Grainger
-
One supplementary figure is available with the online Supplementary Material.
- Keyword(s): 5 UTR, antisense RNA, stem–loops, transcription, RNA stability
-
Abbreviations: DUS DNA uptake sequence IHF integration host factor qRT-PCR quantitative real-time PCR rbs ribosomal binding site sRNA small antisense RNA UTR untranslated region
© 2016 The Authors
Erratum
-
Arnold T. E., Yu J., Belasco J. G..( 1998;). mRNA stabilization by the ompA 5′ untranslated region: two protective elements hinder distinct pathways for mRNA degradation. . RNA 4: 319––330.[PubMed]
-
Bechhofer D. H., Dubnau D..( 1987;). Induced mRNA stability in Bacillus subtilis. . Proc Natl Acad Sci U S A 84: 498––502. [CrossRef] [PubMed]
-
Bellaousov S., Reuter J. S., Seetin M. G., Mathews D. H..( 2013;). RNAstructure: web servers for RNA secondary structure prediction and analysis. . Nucleic Acids Res 41: W471––W474. [CrossRef] [PubMed]
-
Bergström S., Robbins K., Koomey J. M., Swanson J..( 1986;). Piliation control mechanisms in Neisseria gonorrhoeae. . Proc Natl Acad Sci U S A 83: 3890––3894. [CrossRef] [PubMed]
-
Cahoon L. A., Seifert H. S..( 2013;). Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae. . PLoS Pathog 9: e1003074. [CrossRef] [PubMed]
-
Carrick C. S., Fyfe J. A., Davies J. K..( 1997;). The normally silent sigma54 promoters upstream of the pilE genes of both Neisseria gonorrhoeae and Neisseria meningitidis are functional when transferred to Pseudomonas aeruginosa. . Gene 198: 89––97. [CrossRef] [PubMed]
-
Deana A., Celesnik H., Belasco J. G..( 2008;). The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. . Nature 451: 355––359. [CrossRef] [PubMed]
-
Dietrich M., Munke R., Gottschald M., Ziska E., Boettcher J. P., Mollenkopf H., Friedrich A..( 2009;). The effect of hfq on global gene expression and virulence in Neisseria gonorrhoeae. . FEBS J 276: 5507––5520. [CrossRef] [PubMed]
-
Fyfe J. A., Carrick C. S., Davies J. K..( 1995;). The pilE gene of Neisseria gonorrhoeae MS11 is transcribed from a sigma 70 promoter during growth in vitro. . J Bacteriol 177: 3781––3787.[PubMed] [CrossRef]
-
Fyfe J. A., Davies J. K..( 1998;). An AT-rich tract containing an integration host factor-binding domain and two UP-like elements enhances transcription from the pilEp1 promoter of Neisseria gonorrhoeae. . J Bacteriol 180: 2152––2159.[PubMed]
-
Georg J., Hess W. R..( 2011;). cis-Antisense RNA, another level of gene regulation in bacteria. . Microbiol Mol Biol Rev 75: 286––300. [CrossRef] [PubMed]
-
Hill S. A., Samuels D. S., Carlson J. H., Wilson J., Hogan D., Lubke L., Belland R. J..( 1997;). Integration host factor is a transcriptional cofactor of pilE in Neisseria gonorrhoeae. . Mol Microbiol 23: 649––656. [CrossRef] [PubMed]
-
Hoe C. H., Raabe C. A., Rozhdestvensky T. S., Tang T. H..( 2013;). Bacterial sRNAs: regulation in stress. . Int J Med Microbiol 303: 217––229. [CrossRef] [PubMed]
-
Kellogg D. S., Cohen I. R., Norins L. C., Schroeter A. L., Reising G..( 1968;). Neisseria gonorrhoeae II. Colonial variation and pathogenicity during 35 months in vitro. . J Bacteriol 96: 596––605.[PubMed]
-
Koomey M., Bergstrom S., Blake M., Swanson J..( 1991;). Pilin expression and processing in pilus mutants of Neisseria gonorrhoeae: critical role of Gly-1 in assembly. . Mol Microbiol 5: 279––287. [CrossRef] [PubMed]
-
Marzi S., Fechter P., Chevalier C., Romby P., Geissmann T..( 2008;). RNA switches regulate initiation of translation in bacteria. . Biol Chem 389: 585––598. [CrossRef] [PubMed]
-
Masters T. L., Wachter S., Wachter J., Hill S. A..( 2016;). H-NS suppresses pilE intragenic transcription and antigenic variation in Neisseria gonorrhoeae. . Microbiology 162: 177––190. [CrossRef] [PubMed]
-
Pannekoek Y., Huis in 't Veld R., Hopman C. T., Langerak A. A., Speijer D., van der Ende A..( 2009;). Molecular characterization and identification of proteins regulated by Hfq in Neisseria meningitidis. . FEMS Microbiol Lett 294: 216––224. [CrossRef] [PubMed]
-
Ramsey M. E., Bender T., Klimowicz A. K., Hackett K. T., Yamamoto A., Jolicoeur A., Callaghan M. M., Wassarman K. M., van der Does C., Dillard J. P..( 2015;). Targeted mutagenesis of intergenic regions in the Neisseria gonorrhoeae gonococcal genetic island reveals multiple regulatory mechanisms controlling type IV secretion. . Mol Microbiol 97: 1168––1185. [CrossRef] [PubMed]
-
Régnier P., Arraiano C. M..( 2000;). Degradation of mRNA in bacteria: emergence of ubiquitous features. . BioEssays 22: 235––244. [CrossRef] [PubMed]
-
Schuck A., Diwa A., Belasco J. G..( 2009;). RNase E autoregulates its synthesis in Escherichia coli by binding directly to a stem-loop in the rne 5′ untranslated region. . Mol Microbiol 72: 470––478. [CrossRef] [PubMed]
-
Sittka A., Pfeiffer V., Tedin K., Vogel J..( 2007;). The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. . Mol Microbiol 63: 193––217. [CrossRef] [PubMed]
-
Swanson J..( 1973;). Studies on gonococcus infection. IV. Pili: their role in attachment of gonococci to tissue culture cells. . J Exp Med 127: 571––589.[CrossRef]
-
Swanson J..( 1982;). Colony opacity and protein II compositions of gonococci. . Infect Immun 37: 359––368.[PubMed]
-
Swanson J., Robbins K., Barrera O., Corwin D., Boslego J., Ciak J., Blake M., Koomey J. M..( 1987;). Gonococcal pilin variants in experimental gonorrhea. . J Exp Med 165: 1344––1357. [CrossRef] [PubMed]
-
Tønjum T., Koomey M..( 1997;). The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships – a review. . Gene 192: 155––163. [CrossRef] [PubMed]
-
Uppal S., Akkipeddi V. S., Jawali N..( 2008;). Posttranscriptional regulation of cspE in Escherichia coli: involvement of the short 5′-untranslated region. . FEMS Microbiol Lett 279: 83––91. [CrossRef] [PubMed]
-
Wachter J., Hill S. A..( 2015;). Small transcriptome analysis indicates that the enzyme RppH influences both the quality and quantity of sRNAs in Neisseria gonorrhoeae. . FEMS Microbiol Lett 362: 1––7. [CrossRef]
-
Wachter J., Masters T. L., Wachter S., Mason J., Hill S. A..( 2015;). pilS loci in Neisseria gonorrhoeae are transcriptionally active. . Microbiology 161: 1124––1135. [CrossRef] [PubMed]
-
Wade J. T., Grainger D. C..( 2014;). Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. . Nat Rev Microbiol 12: 647––653. [CrossRef] [PubMed]
-
Waters L. S., Storz G..( 2009;). Regulatory RNAs in bacteria. . Cell 136: 615––628. [CrossRef] [PubMed]
-
Zuker M..( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. . Nucleic Acids Res 31: 3406––3415. [CrossRef] [PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/micro/10.1099/mic.0.000369dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/micro AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/micro/10.1099/mic.0.000369dcterms_title,dcterms_subject-pub_serialIdent:journal/micro AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....