The global regulator ANR is essential for Pseudomonas chlororaphis strain PA23 biocontrol Nandi, Munmun and Selin, Carrie and Brawerman, Gabriel and Fernando, W. G. Dilantha and de Kievit, Teresa R.,, 162, 2159-2169 (2016), doi = https://doi.org/10.1099/mic.0.000391, publicationName = Microbiology Society, issn = 1350-0872, abstract= Pseudomonas chlororaphis PA23 is a biocontrol agent capable of protecting canola from stem rot disease caused by the fungus Sclerotinia sclerotiorum. The focus of the current study was to elucidate the role of the transcriptional regulator ANR in the biocontrol capabilities of this bacterium. An anr mutant was created, PA23anr, that was devoid antifungal activity. In other pseudomonads, ANR is essential for regulating HCN production. Characterization of PA23anr revealed that, in addition to HCN, ANR controls phenazine (PHZ), pyrrolnitrin (PRN), protease and autoinducer (AHL) signal molecule production. In gene expression studies, hcnA, phzA, prnA and phzI were found to be downregulated, consistent with our endproduct analysis. Because the phenotype of PA23anr closely resembles that of quorum sensing (QS)-deficient strains, we explored whether there is a connection between ANR and the PhzRI QS system. Both phzI and phzR are positively regulated by ANR, whereas PhzR represses anr transcription. Complementation of PA23anr with pUCP-phzR, C6-HSL or both yielded no change in phenotype. Conversely, PA23phzR harbouring pUCP23-anr exhibited partial-to-full restoration of antifungal activity, HCN, PRN and AHL production together with hcnA, prnA, phzI and rpoS expression. PHZ and protease production remained unchanged indicating that ANR can complement the QS-deficient phenotype with respect to some but not all traits. Our experiments were conducted at atmospheric O2 levels underscoring the fact that ANR has a profound effect on PA23 physiology under aerobic conditions., language=, type=