1887

Abstract

The ribonucleases (RNases) E and J play major roles in and , respectively, and co-exist in We analysed 2011 mutants with mini-Tn insertions in the corresponding genes and and found many overlapping effects. We observed similar changes in mRNA levels, including lower mRNA levels of the motility and chemotaxis related genes , and and higher levels of (important for glucan export). The acyl-homoserine lactone (AHL) levels were also higher during exponential growth in both RNase mutants, despite no increase in the expression of the AHL synthase gene. Furthermore, several RNAs from both mutants migrated aberrantly in denaturing gels at 300 V but not under stronger denaturing conditions at 1300 V. The similarities between the two mutants could be explained by increased levels of the key methyl donor S-adenosylmethionine (SAM), since this may result in faster AHL synthesis leading to higher AHL accumulation as well as in uncontrolled methylation of macromolecules including RNA, which may strengthen RNA secondary structures. Indeed, we found that in both mutants the -methyladenosine content was increased almost threefold and the SAM level was increased at least sevenfold. Complementation by induced ectopic expression of the respective RNase restored the AHL and SAM levels in each of the mutants. In summary, our data show that both RNase E and RNase J are needed for SAM homeostasis in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000442
2017-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/4/570.html?itemId=/content/journal/micro/10.1099/mic.0.000442&mimeType=html&fmt=ahah

References

  1. Belasco JG. All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nat Rev Mol Cell Biol 2010; 11:467–478 [View Article][PubMed]
    [Google Scholar]
  2. Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M et al. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 2010; 34:883–923 [View Article][PubMed]
    [Google Scholar]
  3. Dixon RO. Rhizobia (with particular reference to relationships with host plants). Annu Rev Microbiol 1969; 23:137–158 [View Article][PubMed]
    [Google Scholar]
  4. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 2007; 5:619–633 [View Article][PubMed]
    [Google Scholar]
  5. Becker A, Overlöper A, Schlüter JP, Reinkensmeier J, Robledo M et al. Riboregulation in plant-associated α-proteobacteria. RNA Biol 2014; 11:550–562 [View Article][PubMed]
    [Google Scholar]
  6. Cohen SN, Mcdowall KJ. RNase E: still a wonderfully mysterious enzyme. Mol Microbiol 1997; 23:1099–1106 [View Article][PubMed]
    [Google Scholar]
  7. Baumgardt K, Charoenpanich P, Mcintosh M, Schikora A, Stein E et al. RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti. J Bacteriol 2014; 196:1435–1447 [View Article][PubMed]
    [Google Scholar]
  8. Aït-Bara S, Carpousis AJ. RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs. Mol Microbiol 2015; 97:1021–1135 [View Article][PubMed]
    [Google Scholar]
  9. Ghora BK, Apirion D. Structural analysis and in vitro processing to p5 rRNA of a 9S RNA molecule isolated from an rne mutant of E. coli. Cell 1978; 15:1055–1066 [View Article][PubMed]
    [Google Scholar]
  10. Li Z, Pandit S, Deutscher MP. RNase G (CafA protein) and RNase E are both required for the 5' maturation of 16S ribosomal RNA. EMBO J 1999; 18:2878–2885 [View Article][PubMed]
    [Google Scholar]
  11. Mc O, Kushner SR. Initiation of tRNA maturation by RNase E is essential for cell viability in E. coli. Genes Dev 2002; 16:1101–1115
    [Google Scholar]
  12. Babitzke P, Kushner SR. The Ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of Escherichia coli. Proc Natl Acad Sci USA 1991; 88:1–5 [View Article][PubMed]
    [Google Scholar]
  13. Hajnsdorf E, Steier O, Coscoy L, Teysset L, Régnier P. Roles of RNase E, RNase II and PNPase in the degradation of the rpsO transcripts of Escherichia coli: stabilizing function of RNase II and evidence for efficient degradation in an ams pnp rnb mutant. EMBO J 1994; 13:3368–3377[PubMed]
    [Google Scholar]
  14. Stead MB, Marshburn S, Mohanty BK, Mitra J, Pena Castillo L et al. Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays. Nucleic Acids Res 2011; 39:3188–3203 [View Article][PubMed]
    [Google Scholar]
  15. Mackie GA. Ribonuclease E is a 5'-end-dependent endonuclease. Nature 1998; 395:720–723 [View Article][PubMed]
    [Google Scholar]
  16. Khemici V, Poljak L, Luisi BF, Carpousis AJ. The RNase E of Escherichia coli is a membrane-binding protein. Mol Microbiol 2008; 70:799–813 [View Article][PubMed]
    [Google Scholar]
  17. McDowall KJ, Cohen SN. The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding site. J Mol Biol 1996; 255:349–355 [View Article][PubMed]
    [Google Scholar]
  18. Vanzo NF, Li YS, Py B, Blum E, Higgins CF et al. Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev 1998; 12:2770–2781 [View Article][PubMed]
    [Google Scholar]
  19. Miczak A, Kaberdin VR, Wei CL, Lin-Chao S. Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc Natl Acad Sci USA 1996; 93:3865–3869 [View Article][PubMed]
    [Google Scholar]
  20. Mackie GA. RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 2013; 11:45–57 [View Article][PubMed]
    [Google Scholar]
  21. Baumgardt K, Šmídová K, Rahn H, Lochnit G, Robledo M et al. The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti. RNA Biol 2016; 13:486–499 [View Article][PubMed]
    [Google Scholar]
  22. Even S, Pellegrini O, Zig L, Labas V, Vinh J et al. Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional homology to E.coli RNase E. Nucleic Acids Res 2005; 33:2141–2152 [View Article][PubMed]
    [Google Scholar]
  23. Mäder U, Zig L, Kretschmer J, Homuth G, Putzer H. mRNA processing by RNases J1 and J2 affects Bacillus subtilis gene expression on a global scale. Mol Microbiol 2008; 70:183–196 [View Article][PubMed]
    [Google Scholar]
  24. Commichau FM, Rothe FM, Herzberg C, Wagner E, Hellwig D et al. Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. Mol Cell Proteomics 2009; 8:1350–1360 [View Article][PubMed]
    [Google Scholar]
  25. Shahbabian K, Jamalli A, Zig L, Putzer H. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 2009; 28:3523–3533. [View Article][PubMed]
    [Google Scholar]
  26. Mathy N, Hébert A, Mervelet P, Bénard L, Dorléans A et al. Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour. Mol Microbiol 2010; 75:489–498 [View Article][PubMed]
    [Google Scholar]
  27. Durand S, Gilet L, Bessières P, Nicolas P, Condon C. Three essential ribonucleases-RNase Y, J1, and III-control the abundance of a majority of Bacillus subtilis mRNAs. PLoS Genet 2012; 8:e1002520 [View Article][PubMed]
    [Google Scholar]
  28. Figaro S, Durand S, Gilet L, Cayet N, Sachse M et al. Bacillus subtilis mutants with knockouts of the genes encoding ribonucleases RNase Y and RNase J1 are viable, with major defects in cell morphology, sporulation, and competence. J Bacteriol 2013; 195:2340–2348 [View Article][PubMed]
    [Google Scholar]
  29. Mathy N, Bénard L, Pellegrini O, Daou R, Wen T et al. 5′-to-3′ exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5' stability of mRNA. Cell 2007; 129:681–692 [View Article][PubMed]
    [Google Scholar]
  30. de la Sierra Gallay IL, Zig L, Jamalli A, Putzer H. Structural insights into the dual activity of RNase J. Nat Struct Mol Biol 2008; 15:206–212 [CrossRef]
    [Google Scholar]
  31. Madhugiri R, Evguenieva-Hackenberg E. RNase J is involved in the 5'-end maturation of 16S rRNA and 23S rRNA in Sinorhizobium meliloti. FEBS Lett 2009; 583:2339–2342 [View Article][PubMed]
    [Google Scholar]
  32. Taverniti V, Forti F, Ghisotti D, Putzer H. Mycobacterium smegmatis RNase J is a 5'-3' exo-/endoribonuclease and both RNase J and RNase E are involved in ribosomal RNA maturation. Mol Microbiol 2011; 82:1260–1276 [View Article][PubMed]
    [Google Scholar]
  33. Rische T, Klug G. The ordered processing of intervening sequences in 23S rRNA of Rhodobacter sphaeroides requires RNase J. RNA Biol 2012; 9:343–350 [View Article][PubMed]
    [Google Scholar]
  34. Bralley P, Aseem M, Jones GH. SCO5745, a bifunctional RNase J ortholog, affects antibiotic production in Streptomyces coelicolor. J Bacteriol 2014; 196:1197–1205 [View Article][PubMed]
    [Google Scholar]
  35. Britton RA, Wen T, Schaefer L, Pellegrini O, Uicker WC et al. Maturation of the 5' end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Mol Microbiol 2007; 63:127–138 [View Article][PubMed]
    [Google Scholar]
  36. Linder P, Lemeille S, Redder P. Transcriptome-wide analyses of 5'-ends in RNase J mutants of a gram-positive pathogen reveal a role in RNA maturation, regulation and degradation. PLoS Genet 2014; 10:e1004207 [View Article][PubMed]
    [Google Scholar]
  37. Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S et al. Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti. Appl Environ Microbiol 2006; 72:4329–4337 [View Article][PubMed]
    [Google Scholar]
  38. Marketon MM, Gronquist MR, Eberhard A, González JE. Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol 2002; 184:5686–5695 [View Article][PubMed]
    [Google Scholar]
  39. Teplitski M, Eberhard A, Gronquist MR, Gao M, Robinson JB et al. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Arch Microbiol 2003; 180:494–497 [View Article][PubMed]
    [Google Scholar]
  40. Parsek MR, Val DL, Hanzelka BL, Cronan JE, Greenberg EP. Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci USA 1999; 96:4360–4365 [View Article][PubMed]
    [Google Scholar]
  41. Loenen WA. S-adenosylmethionine: jack of all trades and master of everything?. Biochem Soc Trans 2006; 34:330–333 [View Article][PubMed]
    [Google Scholar]
  42. McIntosh M, Krol E, Becker A. Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti. J Bacteriol 2008; 190:5308–5317 [View Article][PubMed]
    [Google Scholar]
  43. Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC. A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J Bacteriol 2002; 184:5067–5076 [View Article][PubMed]
    [Google Scholar]
  44. McIntosh M, Meyer S, Becker A. Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability. Mol Microbiol 2009; 74:1238–1256 [View Article][PubMed]
    [Google Scholar]
  45. Gao M, Barnett MJ, Long SR, Teplitski M. Role of the Sinorhizobium meliloti global regulator Hfq in gene regulation and symbiosis. Mol Plant Microbe Interact 2010; 23:355–365 [View Article][PubMed]
    [Google Scholar]
  46. Torres-Quesada O, Reinkensmeier J, Schlüter JP, Robledo M, Peregrina A et al. Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti. RNA Biol 2014; 11:563–579 [View Article][PubMed]
    [Google Scholar]
  47. Gao M, Tang M, Guerich L, Salas-Gonzalez I, Teplitski M. Modulation of Sinorhizobium meliloti quorum sensing by Hfq-mediated post-transcriptional regulation of ExpR. Environ Microbiol Rep 2015; 7:148–154 [View Article][PubMed]
    [Google Scholar]
  48. Meade HM, Signer ER. Genetic mapping of Rhizobium meliloti. Proc Natl Acad Sci USA 1977; 74:2076–2078 [View Article][PubMed]
    [Google Scholar]
  49. Casse F, Boucher C, Julliot JS, Michel M, Denarie J. Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 1979; 113:229–242 [View Article]
    [Google Scholar]
  50. Galibert F, Finan TM, Long SR, Puhler A, Abola P et al. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 2001; 293:668–672 [View Article][PubMed]
    [Google Scholar]
  51. Sallet E, Roux B, Sauviac L, Jardinaud MF, Carrère S et al. Next-generation annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti 2011. DNA Res 2013; 20:339–354 [View Article][PubMed]
    [Google Scholar]
  52. Beringer JE. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 1974; 84:188–198 [View Article][PubMed]
    [Google Scholar]
  53. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1983; 1:784–791 [View Article]
    [Google Scholar]
  54. Keen NT, Tamaki S, Kobayashi D, Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 1988; 70:191–197 [View Article][PubMed]
    [Google Scholar]
  55. Khan SR, Gaines J, Roop RM, Farrand SK. Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol 2008; 74:5053–5062 [View Article][PubMed]
    [Google Scholar]
  56. Cha C, Gao P, Chen YC, Shaw PD, Farrand SK. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 1998; 11:1119–1129 [View Article][PubMed]
    [Google Scholar]
  57. Winson MK, Swift S, Fish L, Throup JP, Jørgensen F et al. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 1998; 163:185–192[PubMed] [CrossRef]
    [Google Scholar]
  58. Masterson RV, Prakash RK, Atherly AG. Conservation of symbiotic nitrogen fixation gene sequences in Rhizobium japonicum and Bradyrhizobium japonicum. J Bacteriol 1985; 163:21–26[PubMed]
    [Google Scholar]
  59. Glaeser J, Klug G. Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes. Microbiology 2005; 151:1927–1938 [View Article][PubMed]
    [Google Scholar]
  60. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:e45 [View Article][PubMed]
    [Google Scholar]
  61. Schlüter JP, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E, Janssen S et al. A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti. BMC Genomics 2010; 11:245 [View Article][PubMed]
    [Google Scholar]
  62. Voss B, Hölscher M, Baumgarth B, Kalbfleisch A, Kaya C et al. Expression of small RNAs in Rhizobiales and protection of a small RNA and its degradation products by Hfq in Sinorhizobium meliloti. Biochem Biophys Res Commun 2009; 390:331–336 [View Article][PubMed]
    [Google Scholar]
  63. Robledo M, Frage B, Wright PR, Becker A. A stress-induced small RNA modulates alpha-rhizobial cell cycle progression. PLoS Genet 2015; 11:e1005153 [View Article][PubMed]
    [Google Scholar]
  64. Serrania J, Vorhölter FJ, Niehaus K, Pühler A, Becker A. Identification of Xanthomonas campestris pv. campestris galactose utilization genes from transcriptome data. J Biotechnol 2008; 135:309–317 [View Article][PubMed]
    [Google Scholar]
  65. Yang YH, Dudoit S, Luu P, Lin DM, Peng V et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002; 30:e15 [View Article][PubMed]
    [Google Scholar]
  66. Dondrup M, Albaum SP, Griebel T, Henckel K, Jünemann S et al. EMMA 2-a MAGE-compliant system for the collaborative analysis and integration of microarray data. BMC Bioinformatics 2009; 10:50 [View Article][PubMed]
    [Google Scholar]
  67. Hoang HH, Becker A, González JE. The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J Bacteriol 2004; 186:5460–5472 [View Article][PubMed]
    [Google Scholar]
  68. Hoang HH, Gurich N, González JE. Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti. J Bacteriol 2008; 190:861–871 [CrossRef]
    [Google Scholar]
  69. Picard F, Dressaire C, Girbal L, Cocaign-Bousquet M. Examination of post-transcriptional regulations in prokaryotes by integrative biology. C R Biol 2009; 332:958–973 [View Article][PubMed]
    [Google Scholar]
  70. Hegg LA, Thurlow DL. Residual tRNA secondary structure in 'denaturing' 8M urea/TBE polyacrylamide gels: effects on electrophoretic mobility and dependency on prior chemical modification of the tRNA. Nucleic Acids Res 1990; 18:2993–3000 [View Article][PubMed]
    [Google Scholar]
  71. Deng X, Chen K, Luo GZ, Weng X, Ji Q et al. Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res 2015; 43:6557–6567 [View Article][PubMed]
    [Google Scholar]
  72. Bernstein JA, Lin PH, Cohen SN, Lin-Chao S. Global analysis of Escherichia coli RNA degradosome function using DNA microarrays. Proc Natl Acad Sci USA 2004; 101:2758–2763 [View Article][PubMed]
    [Google Scholar]
  73. Chang DE, Smalley DJ, Conway T. Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol 2002; 45:289–306 [View Article][PubMed]
    [Google Scholar]
  74. Motorin Y, Helm M. RNA nucleotide methylation. Wiley Interdiscip Rev RNA 2011; 2:611–631 [View Article][PubMed]
    [Google Scholar]
  75. Marbaniang CN, Vogel J. Emerging roles of RNA modifications in bacteria. Curr Opin Microbiol 2016; 30:50–57 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000442
Loading
/content/journal/micro/10.1099/mic.0.000442
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error