RT Journal Article SR Electronic(1) A1 Liu, Na A1 Yu, Min A1 Zhao, Youbin A1 Cheng, Jingguang A1 An, Ke A1 Zhang, Xiao-HuaYR 2017 T1 PfmA, a novel quorum-quenching N-acylhomoserine lactone acylase from Pseudoalteromonas flavipulchra JF Microbiology, VO 163 IS 10 SP 1389 OP 1398 DO https://doi.org/10.1099/mic.0.000535 PB Microbiology Society, SN 1465-2080, AB Many bacteria, such as Proteobacteria, Cyanobacteria and Bacteroidetes, use N-acylhomoserine lactones (AHLs) as quorum-sensing (QS) signal molecules for communication. Enzymatic degradation of AHLs, such as AHL acylase and AHL lactonase, can degrade AHLs (quorum quenching, QQ) to attenuate or disarm the virulence of pathogens. QQ is confirmed to be common in marine bacterial communities. Many genes encoding AHL acylases are found in marine bacteria and metagenomic collections, but only a few of these have been characterized in detail. We have reported that the marine bacterium Pseudoalteromonas flavipulchra JG1 can degrade AHLs. In the present study, a novel AHL acylase PfmA, which can degrade AHLs with acyl chains longer than 10 carbons, was identified from strain JG1. Ultra-performance liquid chromatography (UPLC) and electrospray ionization mass spectrometry (ESI-MS) analysis demonstrated that PfmA functions as an AHL acylase, which hydrolysed the amide bond of AHL. The purified PfmA of P. flavipulchra JG1 showed optimum activity at 30 °C and pH 7.0. PfmA belongs to the N-terminal nucleophile (Ntn) hydrolase superfamily and showed homology to a member of penicillin amidases, but PfmA can degrade ampicillin but not penicillin G. The residue Ser256 in PfmA is the active site according to site-directed mutagenesis. Furthermore, PfmA reduced AHL accumulation and the production of virulence factors in Vibrio anguillarum VIB72 and Pseudomonas aeruginosa PAO1, and attenuated the virulence of P. aeruginosa to increase Artemia survival, which suggested that PfmA can be considered as a therapeutic agent to control AHL-mediated pathogenicity., UL https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000535