1887

Abstract

, a Gram-negative, multi-drug-resistant bacterium, is increasingly recognized as a key opportunistic pathogen. Thus, we embarked upon an investigation of iron acquisition. To begin, we determined that the genome of strain K279a is predicted to encode a complete siderophore system, including a biosynthesis pathway, an outer-membrane receptor for ferrisiderophore, and other import and export machinery. Compatible with these data, K279a and other clinical isolates of secreted a siderophore-like activity when grown at 25–37 °C in low-iron media, as demonstrated by a chrome azurol S assay, which detects iron chelation, and Arnow and Rioux assays, which detect catecholate structures. Importantly, these supernatants rescued the growth of iron-starved , documenting the presence of a biologically active siderophore. A mutation in one of the predicted biosynthesis genes () abolished production of the siderophore and impaired bacterial growth in low-iron conditions. Inactivation of the putative receptor gene () prevented the utilization of siderophore-containing supernatants for growth in low-iron conditions. Although the biosynthesis and import loci showed some similarity to those of enterobactin, a well-known catecholate made by enteric bacteria, the siderophore of K279a was unable to rescue the growth of an enterobactin-utilizing indicator strain, and conversely iron-starved could not use purified enterobactin. Furthermore, the siderophore displayed patterns of solubility in organic compounds and mobility upon thin-layer chromatography that were distinct from those of enterobactin and its derivative, salmochelin. Together, these data demonstrate that secretes a novel catecholate siderophore.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000545
2017-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/11/1590.html?itemId=/content/journal/micro/10.1099/mic.0.000545&mimeType=html&fmt=ahah

References

  1. Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 2012; 25:2–41 [View Article][PubMed]
    [Google Scholar]
  2. Stanojevic S, Ratjen F, Stephens D, Lu A, Yau Y et al. Factors influencing the acquisition of Stenotrophomonas maltophilia infection in cystic fibrosis patients. J Cyst Fibros 2013; 12:575–583 [View Article][PubMed]
    [Google Scholar]
  3. Chang YT, Lin CY, Chen YH, Hsueh PR. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front Microbiol 2015; 6:893 [View Article][PubMed]
    [Google Scholar]
  4. Gherardi G, Creti R, Pompilio A, Di Bonaventura G. An overview of various typing methods for clinical epidemiology of the emerging pathogen Stenotrophomonas maltophilia . Diagn Microbiol Infect Dis 2015; 81:219–226 [View Article][PubMed]
    [Google Scholar]
  5. Handa Y, Tazato N, Nagatsuka Y, Koide T, Kigawa R et al. Stenotrophomonas tumulicola sp. nov., a major contaminant of the stone chamber interior in the Takamatsuzuka Tumulus. Int J Syst Evol Microbiol 2016; 66:1119–1124 [View Article]
    [Google Scholar]
  6. Patil PP, Midha S, Kumar S, Patil PB. Genome sequence of type strains of genus Stenotrophomonas . Front Microbiol 2016; 7:309 [View Article][PubMed]
    [Google Scholar]
  7. Ouattara AS, Le Mer J, Joseph M, Macarie H. Transfer of Pseudomonas pictorum Gray and Thornton 1928 to genus Stenotrophomonas as Stenotrophomonas pictorum comb. nov., and emended description of the genus Stenotrophomonas . Int J Syst Evol Microbiol 2017; 67:1894–1900 [View Article][PubMed]
    [Google Scholar]
  8. Sánchez-Castro I, Ruiz-Fresneda MA, Bakkali M, Kämpfer P, Glaeser SP et al. Stenotrophomonas bentonitica sp. nov., isolated from bentonite formations. Int J Syst Evol Microbiol 2017; 67:2779–2786 [View Article][PubMed]
    [Google Scholar]
  9. Behnia M, Logan SC, Fallen L, Catalano P. Nosocomial and ventilator-associated pneumonia in a community hospital intensive care unit: a retrospective review and analysis. BMC Res Notes 2014; 7:232 [View Article][PubMed]
    [Google Scholar]
  10. Schaffer K. Epidemiology of infection and current guidelines for infection prevention in cystic fibrosis patients. J Hosp Infect 2015; 89:309–313 [View Article][PubMed]
    [Google Scholar]
  11. Salsgiver EL, Fink AK, Knapp EA, Lipuma JJ, Olivier KN et al. Changing epidemiology of the respiratory bacteriology of patients with cystic fibrosis. Chest 2016; 149:390–400 [View Article][PubMed]
    [Google Scholar]
  12. Waters V, Yau Y, Prasad S, Lu A, Atenafu E et al. Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 2011; 183:635–640 [View Article][PubMed]
    [Google Scholar]
  13. Sánchez MB, Martínez JL. The efflux pump SmeDEF contributes to trimethoprim-sulfamethoxazole resistance in Stenotrophomonas maltophilia . Antimicrob Agents Chemother 2015; 59:4347–4348 [View Article][PubMed]
    [Google Scholar]
  14. Rouf R, Karaba SM, Dao J, Cianciotto NP. Stenotrophomonas maltophilia strains replicate and persist in the murine lung, but to significantly different degrees. Microbiology 2011; 157:2133–2142 [View Article][PubMed]
    [Google Scholar]
  15. Di Bonaventura G, Pompilio A, Zappacosta R, Petrucci F, Fiscarelli E et al. Role of excessive inflammatory response to Stenotrophomonas maltophilia lung infection in DBA/2 mice and implications for cystic fibrosis. Infect Immun 2010; 78:2466–2476 [View Article][PubMed]
    [Google Scholar]
  16. Zgair AK, Chhibber S. Immunological and pathological aspects of respiratory tract infection with Stenotrophomonas maltophilia in BALB/c mice. J Microbiol Biotechnol 2010; 20:1585–1591 [View Article][PubMed]
    [Google Scholar]
  17. Pompilio A, Crocetta V, Ghosh D, Chakrabarti M, Gherardi G et al. Stenotrophomonas maltophilia phenotypic and genotypic diversity during a 10-year colonization in the lungs of a cystic fibrosis patient. Front Microbiol 2016; 7:1551 [View Article][PubMed]
    [Google Scholar]
  18. Karaba SM, White RC, Cianciotto NP. Stenotrophomonas maltophilia encodes a type II protein secretion system that promotes detrimental effects on lung epithelial cells. Infect Immun 2013; 81:3210–3219 [View Article][PubMed]
    [Google Scholar]
  19. DuMont AL, Karaba SM, Cianciotto NP. Type II secretion-dependent degradative and cytotoxic activities mediated by the Stenotrophomonas maltophilia serine proteases StmPr1 and StmPr2. Infect Immun 2015; 83:3825–3837 [View Article][PubMed]
    [Google Scholar]
  20. DuMont AL, Cianciotto NP. Stenotrophomonas maltophilia serine protease StmPr1 induces Matrilysis, anoikis, and protease-activated receptor-2 activation in human lung epithelial cells. Infect Immun 2017 in press [View Article][PubMed]
    [Google Scholar]
  21. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas . Nat Rev Microbiol 2009; 7:514–525 [View Article][PubMed]
    [Google Scholar]
  22. Adamek M, Linke B, Schwartz T. Virulence genes in clinical and environmental Stenotrophomas maltophilia isolates: a genome sequencing and gene expression approach. Microb Pathog 2014; 67-68:20–30 [View Article][PubMed]
    [Google Scholar]
  23. Raymond KN, Dertz EA, Kim SS. Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 2003; 100:3584–3588 [View Article][PubMed]
    [Google Scholar]
  24. Fiedler HP, Krastel P, Müller J, Gebhardt K, Zeeck A. Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett 2001; 196:147–151 [View Article][PubMed]
    [Google Scholar]
  25. Mokracka J, Koczura R, Kaznowski A. Yersiniabactin and other siderophores produced by clinical isolates of Enterobacter spp. and Citrobacter spp. FEMS Immunol Med Microbiol 2004; 40:51–55 [View Article][PubMed]
    [Google Scholar]
  26. Minkwitz A, Berg G. Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia . J Clin Microbiol 2001; 39:139–145 [View Article][PubMed]
    [Google Scholar]
  27. Peralta KD, Araya T, Valenzuela S, Sossa K, Martínez M et al. Production of phytohormones, siderophores and population fluctuation of two root-promoting rhizobacteria in Eucalyptus globulus cuttings. World J Microbiol Biotechnol 2012; 28:2003–2014 [View Article][PubMed]
    [Google Scholar]
  28. Williams TJ, Willcox MD, Schneider RP. Interactions of ocular isolates of gram-negative bacteria with lactoferrin. Eye Contact Lens 2012; 38:208–213 [View Article][PubMed]
    [Google Scholar]
  29. García CA, Passerini de Rossi B, Alcaraz E, Vay C, Franco M. Siderophores of Stenotrophomonas maltophilia: detection and determination of their chemical nature. Rev Argent Microbiol 2012; 44:150–154[PubMed]
    [Google Scholar]
  30. Avison MB, von Heldreich CJ, Higgins CS, Bennett PM, Walsh TR. A TEM-2 β-lactamase encoded on an active Tn1-like transposon in the genome of a clinical isolate of Stenotrophomonas maltophilia . J Antimicrob Chemother 2000; 46:879–884 [View Article][PubMed]
    [Google Scholar]
  31. Rabsch W, Winkelmann G. The specificity of bacterial siderophore receptors probed by bioassays. Biol Met 1991; 4:244–250 [View Article][PubMed]
    [Google Scholar]
  32. Armstrong SK, Clements MO. Isolation and characterization of Bordetella bronchiseptica mutants deficient in siderophore activity. J Bacteriol 1993; 175:1144–1152 [View Article][PubMed]
    [Google Scholar]
  33. Merritt LL, Schroeder E. The crystal structure of 2,2'-bipyridine. Acta Crystallogr 1956; 9:801–804 [View Article]
    [Google Scholar]
  34. Stookey LL. Ferrozine–a new spectrophotometric reagent for iron. Anal Chem 1970; 42:779–781 [View Article]
    [Google Scholar]
  35. Lin M, Pan D, Zhu Y, Hu X, Han H et al. Dual-nanomaterial based electrode for voltammetric stripping of trace Fe(II) in coastal waters. Talanta 2016; 154:127–133 [View Article][PubMed]
    [Google Scholar]
  36. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 1987; 160:47–56 [View Article][PubMed]
    [Google Scholar]
  37. Payne SM. Detection, isolation, and characterization of siderophores. Methods Enzymol 1994; 235:329–344[PubMed] [Crossref]
    [Google Scholar]
  38. Burnside DM, Wu Y, Shafaie S, Cianciotto NP. The Legionella pneumophila siderophore legiobactin is a polycarboxylate that is identical in structure to rhizoferrin. Infect Immun 2015; 83:3937–3945 [View Article][PubMed]
    [Google Scholar]
  39. Arnow LE. Colorimetric determination of the components of 3,4-dihyrdoxyphenylalanine tyrosine mixtures. J Biol Chem 1937; 118:531–537
    [Google Scholar]
  40. Liles MR, Scheel TA, Cianciotto NP. Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila . J Bacteriol 2000; 182:749–757 [View Article][PubMed]
    [Google Scholar]
  41. Rioux C, Jordan DC, Rattray JB. Colorimetric determination of catechol siderophores in microbial cultures. Anal Biochem 1983; 133:163–169 [View Article][PubMed]
    [Google Scholar]
  42. Furrer JL, Sanders DN, Hook-Barnard IG, Mcintosh MA. Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol Microbiol 2002; 44:1225–1234 [View Article][PubMed]
    [Google Scholar]
  43. Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics 1998; 14:48–54 [View Article][PubMed]
    [Google Scholar]
  44. Bailey TL, Boden M, Buske FA, Frith M, Grant CE et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009; 37:W202–W208 [View Article][PubMed]
    [Google Scholar]
  45. Bryan A, Harada K, Swanson MS. Efficient generation of unmarked deletions in Legionella pneumophila . Appl Environ Microbiol 2011; 77:2545–2548 [View Article][PubMed]
    [Google Scholar]
  46. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983; 166:557–580 [View Article][PubMed]
    [Google Scholar]
  47. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995; 166:175–176 [View Article][PubMed]
    [Google Scholar]
  48. Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 2008; 9:R74 [View Article][PubMed]
    [Google Scholar]
  49. Crosa JH, Walsh CT. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 2002; 66:223–249 [View Article][PubMed]
    [Google Scholar]
  50. Barekzi N, Joshi S, Irwin S, Ontl T, Schweizer HP. Genetic characterization of pcpS, encoding the multifunctional phosphopantetheinyl transferase of Pseudomonas aeruginosa . Microbiology 2004; 150:795–803 [View Article][PubMed]
    [Google Scholar]
  51. Sugihara S, Orikasa Y, Okuyama H. The Escherichia coli highly expressed entD gene complements the pfaE deficiency in a pfa gene clone responsible for the biosynthesis of long-chain n-3 polyunsaturated fatty acids. FEMS Microbiol Lett 2010; 307:207–211 [View Article][PubMed]
    [Google Scholar]
  52. Asghar AH, Shastri S, Dave E, Wowk I, Agnoli K et al. The pobA gene of Burkholderia cenocepacia encodes a group I Sfp-type phosphopantetheinyltransferase required for biosynthesis of the siderophores ornibactin and pyochelin. Microbiology 2011; 157:349–361 [View Article][PubMed]
    [Google Scholar]
  53. Allard KA, Viswanathan VK, Cianciotto NP. lbtA and lbtB are required for production of the Legionella pneumophila siderophore legiobactin. J Bacteriol 2006; 188:1351–1363 [View Article][PubMed]
    [Google Scholar]
  54. Huang YW, Hu RM, Yang TC. Role of the pcm-tolCsm operon in the multidrug resistance of Stenotrophomonas maltophilia . J Antimicrob Chemother 2013; 68:1987–1993 [View Article][PubMed]
    [Google Scholar]
  55. Lin CW, Huang YW, Hu RM, Yang TC. SmeOP-TolCSm efflux pump contributes to the multidrug resistance of Stenotrophomonas maltophilia . Antimicrob Agents Chemother 2014; 58:2405–2408 [View Article][PubMed]
    [Google Scholar]
  56. Vega DE, Young KD. Accumulation of periplasmic enterobactin impairs the growth and morphology of Escherichia coli tolC mutants. Mol Microbiol 2014; 91:508–521 [View Article][PubMed]
    [Google Scholar]
  57. Horiyama T, Nishino K. AcrB, AcrD, and MdtABC multidrug efflux systems are involved in enterobactin export in Escherichia coli . PLoS One 2014; 9:e108642 [View Article][PubMed]
    [Google Scholar]
  58. Kunkle DE, Bina XR, Bina JE. The Vibrio cholerae VexGH RND efflux system maintains cellular homeostasis by effluxing vibriobactin. MBio 2017; 8:e00126-17 [View Article][PubMed]
    [Google Scholar]
  59. Ghysels B, Ochsner U, Möllman U, Heinisch L, Vasil M et al. The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol Lett 2005; 246:167–174 [View Article][PubMed]
    [Google Scholar]
  60. Newton SM, Trinh V, Pi H, Klebba PE. Direct measurements of the outer membrane stage of ferric enterobactin transport: postuptake binding. J Biol Chem 2010; 285:17488–17497 [View Article][PubMed]
    [Google Scholar]
  61. García CA, Alcaraz ES, Franco MA, Passerini de Rossi BN. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression, and virulence. Front Microbiol 2015; 6:926 [View Article][PubMed]
    [Google Scholar]
  62. Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. Biochim Biophys Acta 2008; 1778:1781–1804 [View Article][PubMed]
    [Google Scholar]
  63. Kaserer WA, Jiang X, Xiao Q, Scott DC, Bauler M et al. Insight from TonB hybrid proteins into the mechanism of iron transport through the outer membrane. J Bacteriol 2008; 190:4001–4016 [View Article][PubMed]
    [Google Scholar]
  64. Ollis AA, Manning M, Held KG, Postle K. Cytoplasmic membrane protonmotive force energizes periplasmic interactions between ExbD and TonB. Mol Microbiol 2009; 73:466–481 [View Article][PubMed]
    [Google Scholar]
  65. Lin H, Fischbach MA, Liu DR, Walsh CT. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am Chem Soc 2005; 127:11075–11084 [View Article][PubMed]
    [Google Scholar]
  66. Crouch ML, Castor M, Karlinsey JE, Kalhorn T, Fang FC. Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol Microbiol 2008; 67:971–983 [View Article][PubMed]
    [Google Scholar]
  67. Chu BC, Otten R, Krewulak KD, Mulder FA, Vogel HJ. The solution structure, binding properties, and dynamics of the bacterial siderophore-binding protein FepB. J Biol Chem 2014; 289:29219–29234 [View Article][PubMed]
    [Google Scholar]
  68. Miethke M, Hou J, Marahiel MA. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli . Biochemistry 2011; 50:10951–10964 [View Article][PubMed]
    [Google Scholar]
  69. Müller SI, Valdebenito M, Hantke K. Salmochelin, the long-overlooked catecholate siderophore of Salmonella . Biometals 2009; 22:691–695 [View Article][PubMed]
    [Google Scholar]
  70. Svensson-Stadler LA, Mihaylova SA, Moore ER. Stenotrophomonas interspecies differentiation and identification by gyrB sequence analysis. FEMS Microbiol Lett 2012; 327:15–24 [View Article][PubMed]
    [Google Scholar]
  71. Singh V, Yeoh BS, Xiao X, Kumar M, Bachman M et al. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli survival in the inflamed gut. Nat Commun 2015; 6:7113 [View Article][PubMed]
    [Google Scholar]
  72. Lim Y, Shin SH, Lee SI, Kim IS, Rhee JH. Iron repressibility of siderophore and transferrin-binding protein in Staphylococcus aureus . FEMS Microbiol Lett 1998; 163:19–24 [View Article][PubMed]
    [Google Scholar]
  73. Owens L, Austin DA, Austin B. Effect of strain origin on siderophore production in Vibrio harveyi isolates. Dis Aquat Organ 1996; 27:157–160 [View Article]
    [Google Scholar]
  74. Ozenberger BA, Brickman TJ, McIntosh MA. Nucleotide sequence of Escherichia coli isochorismate synthetase gene entC and evolutionary relationship of isochorismate synthetase and other chorismate-utilizing enzymes. J Bacteriol 1989; 171:775–783 [View Article][PubMed]
    [Google Scholar]
  75. Sridharan S, Howard N, Kerbarh O, Błaszczyk M, Abell C et al. Crystal structure of Escherichia coli enterobactin-specific isochorismate synthase (EntC) bound to its reaction product isochorismate: implications for the enzyme mechanism and differential activity of chorismate-utilizing enzymes. J Mol Biol 2010; 397:290–300 [View Article][PubMed]
    [Google Scholar]
  76. Wyckoff EE, Allred BE, Raymond KN, Payne SM. Catechol siderophore transport by Vibrio cholerae . J Bacteriol 2015; 197:2840–2849 [View Article][PubMed]
    [Google Scholar]
  77. Reissbrodt R, Kingsley R, Rabsch W, Beer W, Roberts M et al. Iron-regulated excretion of alpha-keto acids by Salmonella typhimurium . J Bacteriol 1997; 179:4538–4544 [View Article][PubMed]
    [Google Scholar]
  78. Rabsch W. Characterization of the catecholate indicator strain S. typhimurium TA2700 as an ent fhuC double mutant. FEMS Microbiol Lett 1998; 163:79–84 [View Article][PubMed]
    [Google Scholar]
  79. Rabsch W, Voigt W, Reissbrodt R, Tsolis RM, Bäumler AJ. Salmonella typhimurium IroN and FepA proteins mediate uptake of enterobactin but differ in their specificity for other siderophores. J Bacteriol 1999; 181:3610–3612[PubMed]
    [Google Scholar]
  80. Rabsch W, Methner U, Voigt W, Tschäpe H, Reissbrodt R et al. Role of receptor proteins for enterobactin and 2,3-dihydroxybenzoylserine in virulence of Salmonella enterica . Infect Immun 2003; 71:6953–6961 [View Article][PubMed]
    [Google Scholar]
  81. Koczura R, Kaznowski A. The Yersinia high-pathogenicity island and iron-uptake systems in clinical isolates of Escherichia coli . J Med Microbiol 2003; 52:637–642 [View Article][PubMed]
    [Google Scholar]
  82. Winkelmann G, Cansier A, Beck W, Jung G. HPLC separation of enterobactin and linear 2,3-dihydroxybenzoylserine derivatives: a study on mutants of Escherichia coli defective in regulation (fur), esterase (fes) and transport (fepA). Biometals 1994; 7:149–154 [View Article][PubMed]
    [Google Scholar]
  83. Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K et al. The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica . Biometals 2004; 17:471–481 [View Article][PubMed]
    [Google Scholar]
  84. Barnum DW. Spectrophotometric determination of catechol, epinephrine, dopa, dopamine and other aromatic vic-diols. Anal Chim Acta 1977; 89:157–166 [View Article][PubMed]
    [Google Scholar]
  85. Sanchez MB, Hernandez A, Martinez JL. Stenotrophomonas maltophilia drug resistance. Future Microbiol 2009; 4:655–660 [View Article][PubMed]
    [Google Scholar]
  86. Pak TR, Altman DR, Attie O, Sebra R, Hamula CL et al. Whole-genome sequencing identifies emergence of a quinolone resistance mutation in a case of Stenotrophomonas maltophilia bacteremia. Antimicrob Agents Chemother 2015; 59:7117–7120 [View Article][PubMed]
    [Google Scholar]
  87. Pompilio A, Crocetta V, Confalone P, Nicoletti M, Petrucca A et al. Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol 2010; 10:102 [View Article][PubMed]
    [Google Scholar]
  88. Roscetto E, Angrisano T, Costa V, Casalino M, Förstner KU et al. Functional characterization of the RNA chaperone Hfq in the opportunistic human pathogen Stenotrophomonas maltophilia . J Bacteriol 2012; 194:5864–5874 [View Article][PubMed]
    [Google Scholar]
  89. An SQ, Caly DL, Mccarthy Y, Murdoch SL, Ward J et al. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence. PLoS Pathog 2014; 10:e1004429 [View Article][PubMed]
    [Google Scholar]
  90. Bellaire BH, Elzer PH, Hagius S, Walker J, Baldwin CL et al. Genetic organization and iron-responsive regulation of the Brucella abortus 2,3-dihydroxybenzoic acid biosynthesis operon, a cluster of genes required for wild-type virulence in pregnant cattle. Infect Immun 2003; 71:1794–1803 [View Article][PubMed]
    [Google Scholar]
  91. Lawlor MS, O'Connor C, Miller VL. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 2007; 75:1463–1472 [View Article][PubMed]
    [Google Scholar]
  92. Allard KA, Dao J, Sanjeevaiah P, McCoy-Simandle K, Chatfield CH et al. Purification of legiobactin and the importance of this siderophore in lung infection by Legionella pneumophila . Infect Immun 2009; 77:2887–2895 [View Article][PubMed]
    [Google Scholar]
  93. Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. MBio 2012; 3:e00224-11 [View Article][PubMed]
    [Google Scholar]
  94. Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 2006; 103:16502–16507 [View Article][PubMed]
    [Google Scholar]
  95. Strange HR, Zola TA, Cornelissen CN. The fbpABC operon is required for Ton-independent utilization of xenosiderophores by Neisseria gonorrhoeae strain FA19. Infect Immun 2011; 79:267–278 [View Article][PubMed]
    [Google Scholar]
  96. Raines DJ, Moroz OV, Blagova EV, Turkenburg JP, Wilson KS et al. Bacteria in an intense competition for iron: Key component of the Campylobacter jejuni iron uptake system scavenges enterobactin hydrolysis product. Proc Natl Acad Sci USA 2016; 113:5850–5855 [View Article][PubMed]
    [Google Scholar]
  97. Mossialos D, Amoutzias GD. Role of siderophores in cystic fibrosis pathogenesis: foes or friends?. Int J Med Microbiol 2009; 299:87–98 [View Article][PubMed]
    [Google Scholar]
  98. Dalbøge CS, Hansen CR, Pressler T, Høiby N, Johansen HK. Chronic pulmonary infection with Stenotrophomonas maltophilia and lung function in patients with cystic fibrosis. J Cyst Fibros 2011; 10:318–325 [View Article][PubMed]
    [Google Scholar]
  99. Coburn B, Wang PW, Diaz Caballero J, Clark ST, Brahma V et al. Lung microbiota across age and disease stage in cystic fibrosis. Sci Rep 2015; 5:10241 [View Article][PubMed]
    [Google Scholar]
  100. Pompilio A, Crocetta V, de Nicola S, Verginelli F, Fiscarelli E et al. Cooperative pathogenicity in cystic fibrosis: Stenotrophomonas maltophilia modulates Pseudomonas aeruginosa virulence in mixed biofilm. Front Microbiol 2015; 6:951 [View Article][PubMed]
    [Google Scholar]
  101. Lee HJ, Choi SC, Choi EY, Lee MH, Seo GS et al. Iron chelator induces MIP-alpha/CCL20 in human intestinal epithelial cells: implication for triggering mucosal adaptive immunity. Exp Mol Med 2005; 37:297–310 [View Article][PubMed]
    [Google Scholar]
  102. Holden VI, Lenio S, Kuick R, Ramakrishnan SK, Shah YM et al. Bacterial siderophores that evade or overwhelm lipocalin 2 induce hypoxia inducible factor 1α and proinflammatory cytokine secretion in cultured respiratory epithelial cells. Infect Immun 2014; 82:3826–3836 [View Article][PubMed]
    [Google Scholar]
  103. Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 2007; 71:413–451 [View Article][PubMed]
    [Google Scholar]
  104. Alteri CJ, Hagan EC, Sivick KE, Smith SN, Mobley HL. Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog 2009; 5:e1000586 [View Article][PubMed]
    [Google Scholar]
  105. Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592–630 [View Article][PubMed]
    [Google Scholar]
  106. Lamb AL. Breaking a pathogen's iron will: Inhibiting siderophore production as an antimicrobial strategy. Biochim Biophys Acta 2015; 1854:1054–1070 [View Article][PubMed]
    [Google Scholar]
  107. Li K, Chen WH, Bruner SD. Microbial siderophore-based iron assimilation and therapeutic applications. Biometals 2016; 29:377–388 [View Article][PubMed]
    [Google Scholar]
  108. Ahmed E, Holmström SJ. Siderophores in environmental research: roles and applications. Microb Biotechnol 2014; 7:196–208 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000545
Loading
/content/journal/micro/10.1099/mic.0.000545
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error